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Abstract

The extended Fisher–Kolmogorov equation ut ¼ uxx � guxxxx þ f ðuÞ with arbitrary positive

f ðuÞ, satisfying f ð0Þ ¼ f ð1Þ ¼ 0, has monotonic traveling fronts for go 1
12
. We find a simple

lower bound on the speed of the fronts which allows to determine, for a given reaction term,

when will the front of minimal speed be pushed.
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1. Introduction

The extended Fisher–Kolmogorov equation (EFK),

ut ¼ uxx � guxxxx þ f ðuÞ , (1)

with f ðuÞ ¼ u � u3 arises in the description of different systems. It appears, for
example, in the study of phase transitions near a Lifshitz point [1,2]. It has been
derived as an amplitude equation at the onset of instabilities near certain degenerate
points [3]. It has also been proposed as a model for the onset of spatiotemporal chaos
see front matter r 2005 Published by Elsevier B.V.
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in bistable systems [4] and as a natural extension to the reaction diffusion equation
(g ¼ 0) on which to study the dynamics of front propagation and pattern formation
[5,6], etc. Its steady version with different functions f ðuÞ,

uxxxx þ quxx þ f ðuÞ ¼ 0 ,

is of interest in different fields and much work has been devoted to it. A very
complete account of its solutions can be found in Ref. [7].
For go 1

12
numerical results indicate that sufficiently localized conditions evolve

into a uniform translating front joining the stable point u ¼ 1 to the unstable u ¼ 0
point [8]. Similarly, to what is found in the reaction diffusion equation, for the Fisher
case [9,10] f ðuÞ ¼ u � u2 and for f ðuÞ ¼ u � u3 the front propagates with the linear
speed which now is [6]

cL ¼
2ffiffiffiffiffiffiffi
54g

p ½1þ 36g� ð1� 12gÞ3=2�1=2 , (2)

obtained from linear analysis near u ¼ 0. If g4 1
12
monotonic fronts do not exist, and

a pattern may appear.
Numerical results of the integrations of the EFK equation with arbitrary f ðuÞ

show that, as it occurs in the reaction diffusion equation, transition from pulled
fronts (propagating with speed cL) to pushed fronts (propagating at a speed greater
than cL) will occur as parameters in f ðuÞ are varied [8].
In recent work, a sufficient criterion on f ðuÞ for the existence of pulled fronts

analogous to the KPP [10] and Aronson–Weinberger [11] criteria for the reaction
diffusion equation has been established [12]. As for the reaction diffusion equation,
this criterion gives sufficient but not necessary conditions on the reaction term for
the appearance of the front propagating at the linear speed. Numerical results
indicate that for small g fronts of the EFK equation have similar properties to fronts
of the reaction diffusion equation. Rigorous existence results of fronts of the EFK
equation have been given for general functions f ðuÞ [15]. For g ! 0 it, was proved
that there is a minimal speed c
 for the existence of monotonic fronts, and that the
fronts are stable. For g ¼ �2, the minimal speed is given by c
X2� �2 þ � � � [16].
The purpose of the present work is to establish a simple lower bound on the speed c


for which monotonic fronts exist. This enables to test whether for a given function f ðuÞ

the minimal speed is the linear value cL obtained from the linear analysis at the edge of
the front. The bound given in this work is not sharp, but the derivation suggests that it
is possible to obtain a variational formulation for the minimal speed analogous to that
given for the reaction diffusion equation [13,14]. Future work will address this aspect.
2. Monotonic fronts

A traveling monotonic front u ¼ qðx � ctÞ joining the stable state u ¼ 1 to u ¼ 0
satisfies the ordinary differential equation

qzz þ cqz � gqzzzz þ f ðqÞ ¼ 0 ,
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with

lim
z!�1

q ¼ 1; lim
z!1

q ¼ 0; qzo0 ,

where z ¼ x � ct and subscripts denote derivatives.
Following the usual procedure, since the front is monotonic, we may use phase

space variables and define pðqÞ ¼ �dq=dz, where the minus sign is introduced to
have p40. A simple calculation shows that monotonic fronts obey

gp
d

dq
p
d

dq
p
dp

dq

� �� �
� p

dp

dq
þ cp � f ðqÞ ¼ 0 (3)

with

pð0Þ ¼ pð1Þ ¼ 0 and p40 .

Next, we obtain the upper bound. Let gðqÞ be an arbitrary positive decreasing
function. Multiplying Eq. (3) by g=p and integrating with respect to q between 0 and
1 we obtain the identity

c

Z 1

0

gðqÞdq ¼

Z 1

0

gf

p
dq þ

Z 1

0

phdq þ g
Z 1

0

1

3
g000p3 þ hpp02

� �
dq , (4)

where primes denote derivatives with respect to q and where we have defined
hðqÞ ¼ �g0ðqÞ40. In obtaining this expression several integrations by parts were
performed. Surface terms vanish due to the boundary conditions on p. Furthermore,
we assume that the function g does not diverge in a manner that prevents the
vanishing of surface terms.
Consider now the functional

SgðpÞ ¼

Z 1

0

gf

p
dq þ

Z 1

0

phdq þ g
Z 1

0

1

3
g000p3 þ hpp02

� �
dq . (5)

It can be shown (details will be given elsewhere) that for g 2 C3ð½0; 1�Þ; g0o0; g00040,
this functional has a unique minimizer which we call p̂. Therefore,

SgðpÞXmin
p

SgðpÞ ¼ Sgðp̂Þ .

This implies in Eq. (4) that

c

Z 1

0

gðqÞdqXSgðp̂Þ . (6)

The minimizing p, p̂, can be obtained by solving the Euler–Lagrange equation for
SgðpÞ,

d

dq

qL

qp0

� �
�

qL

qp
¼ 0 .

Recalling that the arbitrary function g is a function of q, we obtain

2g
d

dq
½hp̂p̂0

� þ
gf

p̂2
� h � gðhp̂02

þ g000p̂2Þ ¼ 0 . (7)



ARTICLE IN PRESS

R.D. Benguria, M.C. Depassier / Physica A 356 (2005) 61–6564
To obtain the minimizing p for each function gðqÞ, we should solve this equation.
This is not an easy task since gðqÞ is an arbitrary unspecified function. However, it
follows from this equation, multiplying by p̂ðqÞ and integrating in q thatZ 1

0

gf

p̂
� hp̂ � gg000p̂3 � 3ghp̂02p̂

� �
dq ¼ 0 .

Using this result we find that Sgðp̂Þ can be written as

Sgðp̂Þ ¼
4

3

Z 1

0

fg

p̂
þ
2

3

Z 1

0

p̂hdq .

Inequality (6) is then

c

Z 1

0

gðqÞdqX
4

3

Z 1

0

f ðqÞgðqÞ

p̂ðqÞ
dq þ

2

3

Z 1

0

p̂ðqÞhðqÞdq .

Finally, since f40; g40 and h ¼ �g040 we use the inequality a2 þ b2X2ab in the
expression above to obtain our main result

cX
4

ffiffiffi
2

p

3

R 1
0

ffiffiffiffiffiffiffi
fgh

p
dqR 1

0
g dq

. (8)

Notice that this expression is similar in form to the bound obtained previously for
the speed of fronts of the reaction diffusion equation. In that case we proved that the
bound is sharp and that it follows from a variational principle. In the present case
this bound does not saturate; however, a variational principle will follow from (6) if
we succeed in proving that there is a certain function gðqÞ for which p̂ is the solution
of the differential (3). This point will be addressed in future work.
3. Conclusion

A lower bound on the speed of monotonic fronts of the EFK equation has been
obtained. This bound allows to determine the range in which an asymptotic front
may propagate with the linear speed cL. We conjecture that there is a variational
principle for the minimal speed of the fronts from which its exact value could be
calculated.
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