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We study the effect of a small cutoff � on the velocity of a pulled front in one dimension by means of a
variational principle. We obtain a lower bound on the speed dependent on the cutoff, for which the two leading
order terms correspond to the Brunet-Derrida expression. To do so we cast a known variational principle for the
speed of propagation of fronts in different variables which makes it more suitable for applications.
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I. INTRODUCTION

In several problems arising in physics, population dynam-
ics, chemistry, and other fields, it is found that a small per-
turbation to an unstable state leads to a propagating front
joining the unstable to a stable state. The simplest model of
such phenomenon is provided by the scalar reaction diffusion
equation

ut = uxx + f�u� ,

where the reaction term f�u� is a nonlinear function with at
least two fixed points, one stable and one unstable. Without
loss of generality we assume that there is an unstable fixed
point at u=0 and a stable fixed point at u=1. The reaction
term f�u� obeys additional requirements depending on the
phenomenon under study. In the present work we shall be
interested in two generic classes. The first class, which we
label type A, is that for which f �0 in �0,1�, the second class,
type B, also called the combustion case, is that for which f
=0 in �0,a�, and f �0 in �a ,1�. It was proven by Aronson
and Weinberger �1� that sufficiently localized initial condi-
tions evolve into a monotonic front joining the stable to the
unstable state. In case B there is a unique speed for which a
monotonic front exists. In case A, the front propagates with
the minimal speed for which monotonic fronts exist. This
minimal speed satisfies

2�f��0� � c* � 2� sup
0�u�1

�f�u�/u� , �1�

a result also found by Kolmogorov, Petrovsky, and Piskunov
�KPP� �2�. For the classical Fisher-Kolmogorov �2,3� equa-
tion

ut = uxx + u�1 − u� ,

the upper and lower bounds coincide and the speed is exactly
the so-called linear or KPP value cKPP=2�f��0�. Fronts for
which this is the minimal speed are called pulled since this is
the speed obtained from linear considerations at the leading
edge of the front. In all cases the speed can be calculated
from the integral variational principle �4�

c2 = sup
g�u�

2

�
0

1

f�u�g�u�du

�
0

1

g2�u�/h�u�du

, �2�

where the supremum is taken over all positive monotonic
decreasing functions g�u� for which the integrals exist and
where h�u�=−g��u�. Moreover, the supremum is always at-
tained for reaction terms of type B, and for reaction terms of
type A it is attained whenever c�cKPP.

Reaction diffusion equations of type A are often used to
model phenomena in population dynamics, with the assump-
tion that the number of particles or individuals is large. It
was noticed by Brunet and Derrida �5� that the effect of a
finite number of particles can be modeled by reaction terms
of type A with a cutoff �=1/N, where N is the average num-
ber of particles at the saturation state of the front. The effect
of a cutoff on the fronts was studied for the case f�u�=u
−u3 and it was found that the speed of the front with a cutoff
is given approximately by

c � 2 −
�2

�ln ��2 .

This result was obtained by a matching approach. Recently
this result has been proven rigorously by a geometric method
�6�. The precise dependence of the speed of the front on the
cutoff is not universal. An example of this nonuniversality
was shown by introducing a small region of vanishing slope
next to the cutoff �7�, the speed in this case turns out to be
larger than the KPP value. The effect of a cutoff on reaction
diffusion equations is of relevance not only as a model of
populations with a large but finite number of individuals, it is
also relevant to the study of noisy fronts �8� and to some
problems of particle physics. See, for example, Ref. �9� and
references therein.

The purpose of the present work is to show how the speed
of a pulled front with a cutoff can be found from the varia-
tional principle �2�. It is important to notice that the effect of
a cutoff on a reaction term of type A is to transform it into a
reaction term of type B, reaction terms for which the supre-
mum in Eq. �2� is attained and for which a unique speed
exists.

To obtain this result we reformulate the variational prin-
ciple in a new way better suited to treat the fronts with cut-
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off. We apply this new form of the variational principle to the
reaction term considered by Brunet and Derrida, but the re-
sults are of more general validity. We find a lower bound on
the speed which depends on the cutoff, for which the leading
order is the Brunet-Derrida expression. That is, we show that

c � c��� � 2 −
�2

�ln ��2 + h.o.t.

The same result can be obtained by using the alternative
variational principle for the speed �10�.

II. A SIMPLER FORM FOR THE VARIATIONAL
PRINCIPLE

In this section we introduce different variables which ren-
der the variational formula �2� for the speed simpler to apply,
particularly to the case of fronts with a cutoff. As an appli-
cation of this simpler form we show in Appendix A how the
linear or KPP value cKPP=2 is obtained for the Fisher-
Kolmogorov equation.

The variational expression �2� implies that for any admis-
sible trial function g�u�,

c2 � 2

�
0

1

f�u�g�u�du

�
0

1

g2�u�/h�u�du

.

It was shown in �4� that the trial function ĝ�u� for which
equality holds diverges at u=0, so it is convenient to con-
sider trial functions which in addition to the requirements
g�u��0, g��u��0 also satisfy g�0�→�.

Since g�u� is a monotonic decreasing we may perform the
change of variables

u = u�s�, where s = 1/g ,

and consider s as the independent variable in Eq. �2�. With
this change of variables we find

�
0

1

f�u�g�u�du =
F�1�

s0
+ �

0

s0 F„u�s�…
s2 ds ,

where s0=1/g�u=1� is an arbitrary parameter and

F�u� = �
0

u

f�q�dq .

The denominator becomes

�
0

1 g2�u�
h�u�

du = �
0

s0 �du

ds
	2

ds .

In this new variable the variational principle becomes

c2 = sup
u�s�

2

F�1�/s0 + �
0

s0

F„u�s�…/s2ds

�
0

s0

�du/ds�2ds

, �3�

where the supremum is taken over positive increasing func-
tions u�s� such that u�0�=0, u�s0�=1 and for which all the
integrals in Eq. �3� are finite.

In Appendix A, we illustrate how to use this variational
principle to show that for profiles satisfying the KPP crite-
rion �i.e., f�u�� f��0�u, for all 0�u�1�, c=2�f��0�.

III. THE SPEED OF THE FRONT WITH A CUTOFF

In this section we consider the speed of a front for a
reaction term with a cutoff. Even though we choose a spe-
cific reaction term the results obtained are valid for a larger
class of reaction terms. We choose the same reaction term
studied previously by Brunet and Derrida, namely

f�u� = 
0 if 0 � u � �

u − u3 if � � u � 1.
�

For this reaction term

F�u� = 
0 if 0 � u � �

u2/2 − u4/4 − �2/2 + �4/4 if � � u � 1
�

so that F�1�=1/4−�2 /2+�4 /4. We will show that for a cer-
tain trial function the variational formula �3� yields

c2 � c2��� � 4�1 −
�2

�ln ��2
+ ¯ 	 .

For the sake of clarity we postpone until Sec. IV the con-
struction of the trial function.

Choose the trial function

u�s� = 
s if 0 � s � �

A�s cos 	�s� if � � s � s0,
� �4�

where

s0 = 1/�, 	�s� = 
 ln�s/�� − 	*, �5�


 =
	*

�ln ��
, A = ���1 +

1

4
2	1/2

, �6�

and where 	* is the solution of

	* tan 	* =
1

2
�ln �� . �7�

Notice that these definitions imply that in the range ��s
�s0, −	*�	�s��	*, and that, for small �, 	*�� /2.
Therefore u�s� is positive and monotonic increasing.

Having chosen a trial function it is straightforward to ob-
tain a lower bound. The numerator in Eq. �3� is given by
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N��� = F�1�/s0 + �
0

s0

F„u�s�…/s2ds

= �F�1� + �� −
1

�
	� �2

2
−

�4

4
	 +

A2

4

�2	* + sin 2	*�

−
1

4
�

�

1/� u4

s2 ds��F�1� + �� −
1

�
	� �2

2
−

�4

4
	

+
A2

4

�2	* + sin 2	*� + O��3/2�ln ��4� . �8�

�See Eq. �B5� in Appendix B for the details on the estimation
of the last integral in Eq. �8��. The denominator is given by

D��� = �
0

s0

�du/ds�2ds = � +
A2

8

��1 + 4
2�2	*

+ �1 − 4
2�sin 2	*� . �9�

We know then that

c2 � c2��� = 2
N���
D���

. �10�

The bound above is rigorous and it is explicitly dependent on
�. Expanding c��� for small � we obtain in leading order the
desired result �see part �ii� of Appendix B, in particular the
derivation of Eq. �B8��,

c2��� = 4�1 −
�2

�ln ��2
+ h.o.t	 . �11�

It is not difficult to obtain higher order terms in the ex-
pansion of c��� but it is of no interest here.

IV. THE TRIAL FUNCTION

To find the trial function for which the maximum in the
variational formula for the speed is attained we should solve
the associated Euler-Lagrange equation. This is not possible
in general since there are few exactly solvable cases. In the
present situation we are interested in the effect of the cutoff
on pulled fronts, that is, on fronts whose speed is determined
from linearization at the leading edge, therefore we solve the
Euler-Lagrange equation in the linear approximation.

The Euler-Lagrange equation for the variational principle
�3� is

d2u

ds2 + �
f�u�
s2 = 0,

where � is a Lagrange multiplier. Even though it is unrelated
to the present discussion, it is worth mentioning that this
equation can be obtained by performing the change of vari-
able s=exp�−cz� in the ordinary differential equation uzz

+cuz+ f�u�=0, hence we identify the Lagrange multiplier
with 1/c2.

First we obtain the adequate trial function for pulled
fronts without a cutoff. In the linear approximation the Euler-
Lagrange equation is

d2u

ds2 + �
u

s2 = 0,

subject to u�0�=0. The solution is of the form u=s� where �
is given by

� =
1

2
± �1 − 4� .

As shown in Appendix A, the best bound is obtained for �
→1/2 hence the Lagrange multiplier in that limit is �=1/4.

Next we construct the appropriate trial function for a
pulled front with a cutoff. We must solve

d2u1

ds2 = 0, u1�0� = 0, for 0 � u � � .

Since the variational formula �3� is invariant to scaling in s
we may choose, without loss of generality, u1=s. Moreover,
since this is valid for 0�u��, we conclude that in this
region 0�s��. To sum up we have

u1�s� = s, if 0 � s � � .

For u�� �s��� but still small enough for the linear regime
to be valid, we must solve

d2u2

ds2 + �
u2

s2 = 0, with u2��� = u1���, u2���� = u1����

The solution to this equation is straightforward and is given
by

u2�s� = A�s cos 	�s� ,

where

	�s� = 
 ln
s

�
+ , 
 =

1

2
�4� − 1.

The constants A and  are found matching the solution to u1
as indicated above. Applying the matching conditions we
obtain

A = ���1 +
1

4
2	1/2

,  = arctan
− 1

2

. �12�

We must also require that u�s� be positive and monotonic
increasing. The first condition implies −� /2�	�s��� /2.
The second condition, that u�s� be monotonic increasing, im-
plies

tan 	�s� �
1

2

.

Since 	�s� is an increasing function of s we know that

arctan
− 1

2

= 	��� � 	�s� � 	�s0� � arctan

1

2

.

It is intuitively evident that the best bound will be obtained
when the maximum range for 	 is allowed. We choose then
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	�s0�  	* = arctan
1

2

. �13�

With this choice, =	���=−	*. The only free parameter left
is the arbitrary parameter s0. To fix s0 we observe that as s
→s0 the solution must approach u=1. Since for pulled fronts
without a cutoff 
=0, we expect that for small �, 
 will be
small. Then from Eq. �13� it follows that

	* =
�

2
− 2
 + h.o.t.

hence

u�s0� = A�s0cos 	* � A�s0sin�2
� � 2
A�s0.

From Eq. �12� we see that for small 
,

A �
��

2

.

Therefore for small 
, u�s0����s0. Requiring that u�s0�
→1 implies then s0=1/�. With this choice for s0 it follows
that

	�s0� = 	* = − 2
 ln � − 	*,

hence


 =
	*

�ln ��
.

Replacing this value of 
 in Eq. �13� we obtain Eq. �7�, with
which the construction of the trial function is complete.

V. CONCLUSION

The purpose of this work was to study the effect of a
cutoff on the speed of pulled fronts making use of the varia-
tional formulation for the speed. To do so we have rewritten
the variational principle in new variables which simplify the
problem. An additional advantage of this reformulation is
that the Euler-Lagrange equation for the maximizer is seen
easily to be the equation of the traveling front.

Reaction terms with a cutoff belong to the class of general
reaction terms for which a maximizer always exists and for
which the speed is unique. If the original front without a
cutoff is a pulled front then, with a cutoff, it is possible to
solve the Euler-Lagrange equation in the linear approxima-
tion and obtain an upper bound on the speed. This value
obtained from the linear equation is valid only for suffi-
ciently small cutoffs. The lower bound on the speed is a
complicated function of the cutoff, the first two terms in the
series expansion of this bound correspond to the approximate
formula found by other approximate means. Here we have
obtained not only the first two terms in the expansion but a
rigorous bound on the speed.

It has been shown that small perturbations of the reaction
term close to the cutoff have an important effect, and that the
Brunet-Derrida term is not universal for all fronts with a
cutoff. This can be expected since the Euler-Lagrange equa-
tion in the linear regime will be different in each case. A

detailed analysis of this situation will be reported elsewhere.
In the present work we have studied the effect of a cutoff

on a pulled front, the effect of a cutoff on pushed fronts and
bistable fronts has received less attention. A specific example
is studied in �11�. General bounds on the speed have been
obtained making use of the variational principle �2� and ex-
act solutions have been constructed for piecewise continuous
functions �12�. These and other related problems will be the
subject of future work.
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APPENDIX A

Here we show how to recover the value c=2�f��0� from
the variational formulation �3� for the speed of propagation
of fronts when the profile f�u� satisfies the KPP condition,
i.e., when f�u�� f��0�u, for all 0�u�1. Let us denote

N =
F�1�

s0
+ �

0

s0

F„u�s�…
1

s2ds , �A1�

and

D = �
0

s0 �du

ds
	2

ds . �A2�

For the KPP case, F�u�� f��0�u2 /2, hence F�1�� f��0� /2.
Then, it follows from Eq. �A1� that

N � M 
f��0�
2s0

+ �
0

s0

f��0�
u2

2s2ds . �A3�

Integrating the last term by parts and noticing that u�0�=0,
u�s0�=1, and that lims→0 u /s=u��0� exists, we get

�
0

s0

f��0�
u2

2s2ds = �
0

s0

f��0�
u2

2
�−

d

ds

1

s
	ds

= −
f��0�
2s0

+ �
0

s0

f��0�uu�
1

s
ds ,

therefore

M2 � ��
0

s0

f��0�uu�
1

s
ds	2

� f��0�2�
0

s0 u2

s2 ds�
0

s0

„u��s�…2ds ,

�A4�

by Schwarz inequality. However, from Eq. �A3� we have
f��0��0

s0u2 / �2s2�ds�M, and inserting this in Eq. �A4� we
finally get

M � 2f��0��
0

s0

„u��s�…2ds . �A5�

Now, from Eqs. �A2�, �A3�, and �A5� we have that
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2
N

D
� 4f��0� , �A6�

for all possible trial functions u. Therefore taking the supre-
mum of 2N /D over all u, using Eq. �3� we finally get

c � 2�f��0� . �A7�

On the other hand, choosing an appropriate maximizing
sequence of functions, using the variational principle �3�, we
may show that c�2�f��0� and thus we can conclude that
c=2�f��0� in the KPP case. For that purpose, just consider
the family of trial functions u�=s�, which are appropriate
trial functions as long as ��

1
2 . Evaluating the right side of

Eq. �3� with u=u� and letting �→1/2, we get c2�2�f��0�,
which combined with Eq. �A7� yields the desired result. Just
to illustrate this procedure consider the reaction term f�u�
=u−u3. Effectively, with this trial function Eq. �3� implies

c2 �
2

�2�2� − 1

4s0
2� +

1

2
−

2� − 1

4�4� − 1�
s0

2�	 .

In the limit �→1/2 we obtain c2�4.

APPENDIX B

In this appendix we show some details on how to get the
lower bound �11�.

�i� Estimating the integral I��
s0u4 /s2ds for the trial func-

tion u given by Eq. �4�. In order to estimate this integral we
divide it into two parts, as follows:

I1 = �
�

�−1/2 u4

s2 ds �B1�

and

I2 = �
�−1/2

�−1 u4

s2 ds . �B2�

To estimate Eq. �B1� we insert Eq. �4� and we get

I1 = �
�

�−1/2

A4cos4 	�s�ds � A4��−1/2 − �� . �B3�

As for the second integral we use that u�1 to get

I2 � �� − � . �B4�

Adding up this two integrals and using Eq. �6� we see that I
can be estimated from above by a term of order �3/2�ln ��4,
i.e.,

�
�

1/� u4

s2 ds � O��3/2�ln ��4� , �B5�

which is small compared with A2 /
�� / �4
3�=O���ln ��3�,
since �1/2�ln ��→0 as �→0.

We have shown that the contribution of the nonlinear term
I can be neglected when �→0. To do so we split the integral
in two parts. If the reaction term corresponded to that of the
Fisher-Kolmogorov equation, f�u�=u−u2, a different split-
ting is necessary. One can show that the contribution of the
nonlinear term always vanishes compared to the contribution
of the linear term. A different case is that when the slope of
the reaction term next to the cutoff vanishes �7�, but we are
not addressing that problem here.

�ii� Estimating the leading order of Eq. �10�. From the
expressions �6� for A and 
 we see that the leading order in
both Eqs. �8� and �9� are the terms proportional to A2 /
.
Hence the leading order in Eq. �11� is given by

J  4
2	* + sin 2	*

2	* + sin 2	* + 4
2�2	* − sin 2	*�
, �B6�

which we can write as

J = 4
1

1 + 4
2X
, �B7�

where X= �2	*−sin 2	*� / �2	*+sin 2	*�. Finally, we ob-
serve that 0�X�1, since 0�	*�� /2 �in fact, 	*�� /2�,
and also that 1 / �1+a�� �1−a� if a�0, to conclude that

J � 4�1 − 4
2X� � 4�1 − 4
2� � 4�1 −
�2

�ln ��2	 . �B8�
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