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Abstract. We establish rigorous upper and lower bounds for the speed of pulled fronts with a cut-off. For
all reaction terms of KPP type a simple analytic upper bound is given. The lower bounds however depend
on details of the reaction term. For a small cut-off parameter the two leading order terms in the asymptotic
expansion of the upper and lower bounds coincide and correspond to the Brunet-Derrida formula. For large
cut-off parameters the bounds do not coincide and permit a simple estimation of the speed of the front.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 52.35.Mw Nonlinear
phenomena: waves, wave propagation, and other interactions – 02.30.Xx Calculus of variations

1 Introduction

The reaction diffusion equation

ut = uxx + f(u) (1)

provides a simple description of phenomena in fields such
as population dynamics, chemical reactions, flame propa-
gation, fluids, QCD, among others [1–5]. It is one of the
simplest models which shows how a small perturbation to
an unstable state develops into a moving front joining a
stable to an unstable state. The reaction term f(u) satis-
fies different conditions depending on the physical prob-
lem of interest. One of the first, and most studied cases,
is the Fisher reaction term f(u) = u(1 − u) for which
the asymptotic speed of the propagating front is c = 2, a
value determined from linear considerations. A more gen-
eral case was studied by Kolmogorov, Petrovskii and Pis-
counov (KPP)[6] who showed that for all reaction terms
which satisfy the KPP condition

f(u) > 0, f(0) = f(1) = 0, f(u) < f ′(0)u (2)

the asymptotic speed of the front joining the stable u = 1
point to the unstable u = 0 point is given by

cKPP = 2
√

f ′(0).

These fronts are called pulled since it is the leading edge
of the front which determines the velocity of propagation.
In the rest of this work we assume that f ′(0) = 1. The
evolution of localized initial conditions for general reaction
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terms, and rigorous properties of the fronts were studied
by Aronson and Weinberger [7]. The asymptotic speed of
the front for all reaction terms can be found from the
integral variational principle [8]

c2 = sup
g(u)

2

∫ 1

0 f(u)g(u)d u
∫ 1

0
g2(u)/h(u)d u

(3)

where the supremum is taken over all positive monotonic
decreasing functions g(u) for which the integrals exist and
where h(u) = −g′(u). The supremum is always attained
for reaction terms which are not pulled.

An effect not included in the classical reaction diffu-
sion equation (1), is the effect of fluctuations. These arise
when taking into account a finite number N of diffusive
particles. It was shown by Brunet and Derrida that this
effect can be simulated by the classical reaction equation
by introducing a cut-off ε in the reaction term. The cut-off
parameter ε is related to the number of diffusing particles
by ε = 1/N . It is also possible to model fluctuations by
the explicit introduction of noise in the partial differen-
tial equation (1) in which case the cut-off parameter is
proportional to the amplitude of noise.

By means of an asymptotic matching Brunet and Der-
rida showed that for a reaction term f(u) = u(1 − u2) a
small cut-off changes the speed of the front to

c ≈ 2 − π2

(ln ε)2
. (4)

In recent work it has been show that the Brunet-Derrida
formula for the speed is correct to O((ln ε)−3) for a wider
class of reaction terms [10].
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The effect of a cut-off on the speed of pulled fronts has
been studied extensively [9,11,12]. Of particular relevance
to the present work are the results obtained in [13], where
it is shown that the speed of the front is very sensitive
to changes in the reaction term close to the cut-off point.
The speed can be significantly greater or smaller than the
KPP value c = 2. The results we present allow to assess
the range of validity of the Brunet Derrida formula. We
give rigorous bounds for the speed of the fronts which
allow to estimate the speed for arbitrary reaction terms of
KPP type and for all values of the cut-off parameter.

We show that for reaction terms of the form f̃(u)Θ(u−
ε) where f̃ satisfies the KPP condition equation (2) and
Θ is the step function, the speed c of the front with the
cut-off satisfies

2 sin(φ∗) − ∆(φ∗) < c ≤ 2 sin(φ∗), (5)

with
φ∗ tan(φ∗) =

1
2
| ln(ε)|. (6)

The upper bound c = 2 sinφ∗ is the exact value of the
speed for the reaction term shown with a solid line in
Figure 1. The speed of fronts for all reaction terms of
KPP type with a cut-off, depicted with the dotted line in
Figure 1, is lower than this value.

We see that for 0 < ε < 1, 0 < φ∗ < π/2. The func-
tion ∆(φ∗) depends on the specific nonlinear terms of the
reaction function. For small ε the series expansion of the
upper bound cUP is

cUP = 2 sin(φ∗) = 2 − π2

(ln ε)2
+ O((ln ε)−3). (7)

The contribution of the nonlinearities, contained in the
term ∆(φ∗), appears at O((ln ε)−3), so that the leading or-
der terms in the expansion of the upper and lower bounds
give the Brunet-Derrida formula. In what follows we de-
rive the bounds and apply them to the Fisher reaction
term [14] f(u) = u − u2 and to the reaction term stud-
ied by Brunet and Derrida f(u) = u − u3. The main tool
to obtain the bounds is the variational principle for the
speed.

2 Upper and lower bounds

As shown in previous work [15], we may perform the
change variables u = u(s) where s = 1/g in equation (3)
and write the variational expression for the speed as

c2 = sup
u(s)

2
F (1)/s0 +

∫ s0

0
F (u(s))/s2d s

∫ s0

0
(du/ds)2 d s

, (8)

where s0 = 1/g(u = 1) is an arbitrary parameter,

F (u) =
∫ u

0

f(q)dq

and the supremum is taken over positive increasing func-
tions u(s) such that u(0) = 0, u(s0) = 1 and for which all

Fig. 1. The solid line shows the reaction term for which the
exact speed can be determined. The dashed line is a typical
reaction term of pulled type but with a cut-off.

the integrals in (8) are finite. Therefore, for any suitable
trial function u(s) we know that

c2 ≥ 2
F (1)/s0 +

∫ s0

0 F (u(s))/s2d s
∫ s0

0 (du/ds)2 d s
. (9)

In the variational principle above if s0 is finite then it can
be scaled out of the problem. We have chosen to leave it
explicit in order to allow for the possibility s0 = ∞.

Consider now reaction terms f(u) with a cut-off ε of
the form

f̃(u)Θ(u − ε) =
{

0 if 0 ≤ u ≤ ε
u − N(u) if ε < u < 1,

where N(u), the nonlinearity, is such that N(0) =
N ′(0) = 0. We find

F (u) =
{

0 if 0 ≤ u ≤ ε
u2/2 − ε2/2 + Fn(u) if ε < u < 1,

where Fn(u) = − ∫ u

ε N(u)du.

Assume now that f̃(u) satisfies the KPP criterion
equation (2).

Since f̃(u) < u, it follows that F (u) ≤ G(u) where

G(u) =
{

0 if 0 ≤ u ≤ ε
u2/2 − ε2/2 if ε < u < 1,

and therefore

c2 < G[u] ≡ sup
u(s)

2
G(1)/s0 +

∫ s0

0 G(u(s))/s2d s
∫ s0

0 (du/ds)2 d s
. (10)

Notice that G[u] is the speed of the reaction term depicted
with a solid line in Figure 1. One can prove (rigorous de-
tails will be given elsewhere) that G is bounded above
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and that there exists a function û(s) for which the supre-
mum is attained. This function is the monotonic increasing
solution to the Euler-Lagrange equation for G satisfying
the boundary conditions û(0) = 0, û(s0) = 1. One can
also prove that the variational parameter s0 is finite and
û′(s0) = 0. In summary, the maximizing function for G is
the solution of

d2û

ds2
= 0 for 0 < û < ε

d2û

ds2
+ λ

û

s2
= 0, for ε < û < 1

subject to the boundary conditions

û(0) = 0, û(s0) = 1 û′(s0) = 0 û′(s) > 0,

with the function and its derivative continuous at û = ε.
The solution to this problem is given by

û(s) =
{

s if 0 ≤ s ≤ ε
A
√

s cos(φ(s)) if ε < s < s0,

with
A =

√
ε sec(φ∗), s0 = 1/ε, (11)

and
φ(s) =

1
2

cot(φ∗) ln(s/ε) − φ∗, (12)

where φ∗ is the first positive solution of

φ∗ tan φ∗ =
1
2
| ln ε|. (13)

The maximum of G = G[û] can be calculated easily. We
obtain after performing the integrals,

c2 < G[û] = 4 sin2(φ∗) ≡ c2
UP . (14)

To obtain the lower bound we shall use the optimizing
function û(s) as a a suitable trial function in equation (9).
We obtain

c2 ≥ 4 sin2(φ∗)

+
4 sin(φ∗) cos3(φ∗)
ε(2φ∗+sin(2φ∗))

[

εFn(1)+
∫ 1/ε

ε

Fn(û(s))/s2d s

]

.

Since Fn is negative, we may combine equation (14) with
the expression above and write our main result as given
in equation (5).

3 Examples

As an example consider the reaction term studied by
Brunet and Derrida, f̃(u) = u − u3. The lower bound
can be written explicitly as

c2 > 4 sin2(φ∗) − 2(1 − ε2) cos3(φ∗) sin(φ∗)
2φ∗ + sin(2φ∗)

− 2ε sin(φ∗)
cos(φ∗)(2φ∗ + sin(2φ∗))

∫ 1/ε

ε

cos4 φ(s)d s.

Fig. 2. Speed as a function of the cut-off parameter for the
reaction term f̃(u) = u− u3. The solid lines correspond to the
bounds, the dashed line to the Brunet-Derrida formula.

Fig. 3. As in Figure 2 for different values of the cut-off pa-
rameter.

The integral has a long analytic expression which we omit
here. From the explicit expression above it is not diffi-
cult to show that the contribution of the two last terms,
which arise from the nonlinear terms, are of O(| ln ε|−3|.
In Figures 1 and 2 we show the bounds together with the
Brunet-Derrida formula as a function of ε. The solid lines
correspond to the upper and lower bounds. The dashed
line is the Brunet-Derrida formula.

As a second example we consider the Fisher reaction
term f̃(u) = u(1 − u) with a cut-off. The lower bound
becomes

c2 > 4 sin2(φ∗) − 8
3

(1 − ε) sin(φ∗) cos3(φ∗)
(2φ∗ + sin(2φ∗))

−8
3

√
ε sin(φ∗)

(2φ∗ + sin(2φ∗))

∫ 1/ε

ε

cos3 φ(s)√
s

d s.
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Fig. 4. Speed as a function of the cut-off parameter for the
reaction term f̃(u) = u − u2. Lines as in Figure 2.

Again, the integral can be done analytically and we do not
show it here.

In Figure 4 we show the upper and lower bounds
and the Brunet-Derrida formula. In this case the Brunet-
Derrida formula leaves the allowed band at larger value
of ε. In general for reaction terms f̃(u) = u − un, the gap
between the upper and lower bounds becomes narrower
and the Brunet-Derrida formula valid for a smaller range
of ε.

4 Summary

In summary, we have studied the effect of a cut-off on reac-
tion terms which satisfy the KPP condition equation (2).
We have found upper and lower bounds valid for all values

of the cut-off parameters, which allow to assess the accu-
racy of the Brunet Derrida formula, and to estimate the
speed of the front. If we consider only the piecewise linear
reaction term f̃(u) = u, f̃(1) = 0, the upper and lower
bounds coincide and give the exact value for the speed, of
which the two leading order terms are the Brunet-Derrida
formula.
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