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We study the effect of a cutoff on the speed of pulled fronts of the one-dimensional
reaction diffusion equation. To accomplish this, we first use variational techniques
to prove the existence of a heteroclinic orbit in phase space for traveling wave
solutions of the corresponding reaction diffusion equation under conditions that
include discontinuous reaction profiles. This existence result allows us to prove
rigorous upper and lower bounds on the minimal speed of monotonic fronts in terms
of the cut-off parameter ε. From these bounds we estimate the range of validity of
the Brunet–Derrida formula for a general class of reaction terms. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4770248]

I. INTRODUCTION

The reaction diffusion equation

ut = uxx + f (u) (1)

is one of the simplest models which shows how a small perturbation to an unstable state develops into
a moving front joining a stable to an unstable state. For the reaction term f(u) one can adopt different
expressions depending on the physical problem under consideration. One of the most studied cases,
is the Fisher reaction term13 f(u) = u(1 − u) for which the asymptotic speed of the propagating
front is c = 2, a value determined from linear considerations. A more general case was studied
by Kolmogorov, Petrovskii, and Piscounov (KPP)14 who showed that for all reaction terms which
satisfy the so called KPP condition

f (u) > 0, f (0) = f (1) = 0, f (u) < f ′(0)u (2)

the asymptotic speed of the front joining the stable u = 1 point to the unstable u = 0 point is
given by

cK P P = 2
√

f ′(0).

The evolution of localized initial conditions to the front of minimal speed was established in Ref. 1
for a general class of smooth (in fact C1[0, 1]) reaction terms. Recent work has dealt with effects
not included in the classical reaction diffusion equation (1), namely the effects of noise and of
the finiteness in the number n of diffusive particles. It was suggested by Brunet and Derrida9 that
such effects can be simulated by introducing a cutoff in the reaction term. In the case of noise
the cut-off parameter measures the amplitude of the noise while in the case of finite number of n

a)This paper may be reproduced, in its entirety, for non-commercial purposes.
b)E-mail: rbenguri@fis.puc.cl.
c)E-mail: mcdepass@gmail.com.
d)E-mail: loss@math.gatech.edu.
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diffusing particles the cut-off parameter ε = 1/n. They presented numerical evidence to support their
conjecture. By means of an asymptotic matching Brunet and Derrida showed that for a reaction term
f(u) = u(1 − u2) a small cutoff changes the speed of the front to

c ≈ 2 − π2

(log ε)2
. (3)

In recent work it has been shown that the Brunet-Derrida formula for the speed is correct to
O((log ε)−3) for a wider class of pulled reaction terms and cut-off functions.11 A completely different
behavior is found when a cutoff is applied to a bistable reaction term or to a pushed front, in these
two cases the cutoff changes the speed by an amount which has a power law dependence of the
cut-off parameter.5, 12 The validity of representing the finiteness in the number of particles in the
diffusion process by a reaction diffusion equation with a cutoff, and the effect of noise in the reaction
diffusion equation with a cutoff was proved rigorously in Refs. 7 and 16, respectively.

The purpose of this work is to prove rigorous upper and lower bounds for the minimal speed of
monotonic fronts for reaction terms of the form f(u)�(u − ε) where f satisfies conditions analogous
to the KPP condition Eq. (2) and � is the step function. More precisely, we require the profile to
satisfy

f (u) = 0, for u ≤ ε, and 0 ≤ f (u) ≤ f ′(ε+)u for ε < u ≤ 1, and f (1) = 0, (4)

as well as some regularity conditions (see Sec. II below). The results obtained are valid for all ε, and
in the limit of ε → 0 the upper and lower limits coincide and give the Brunet–Derrida value.

In the Aronson and Weinberger article alluded to before,1 it is proven (so far only for C1[0, 1]
reaction profiles) that:

(i) There exists a minimal value of c (say cmin for which there exists a monotone traveling front
solution of the form q(x − ct) for the reaction diffusion equation (1), joining the q = 1 and the
q = 0 states. This function is a solution of the ordinary differential equation,

q ′′ + cq ′ + f (q) = 0, (5)

with q′ < 0 and q(z) → 1 as z → − ∞ and q(z) → 0 and z → + ∞, and
(ii) that any sufficiently localized initial condition to (1) evolves into the solution q of Eq. (5) with

c = cmin.

Profiles exhibiting a cutoff, like the one considered by Brunet and Derrida9 and others, certainly
are not in C1[0, 1], and therefore the Aronson and Weinberger scheme does not necessarily apply
to them. For particular reaction profiles with cutoff, (e.g., for u(1 − u2)�(u − ε), um(1 − u)�(u
− ε), for m ≥ 2, and others) the existence of heteroclinic orbits has been proven using geometric
methods (see, e.g., Refs. 11 and 15).

In this manuscript we partially extend the Aronson and Weinberger scheme, in the sense that
under rather weak conditions on the reaction profile (in particular allowing discontinuous profiles),
we prove the existence of a unique monotone traveling front solution, with minimal speed, of the
form q(x − ct) for the reaction diffusion equation (1), joining the q = 1 and the q = 0 states,
and that this function satisfies (5). Under somewhat stronger assumptions we show that they are
unique. Our proof relies on variational techniques. Notice that making the change of variable z → s
= exp ( − cz) in (5) and writing q(z) = u(s), u should satisfy,

c2 d2u

ds2
+ f (u)

s2
= 0 (6)

and given the conditions on q above, we are interested in solutions of (6), such that u(s) > 0, u′(s)
> 0 on the half–line [0, ∞). Intuitively, (6) is the Euler equation of the variational principle,

c2 = 2 sup

∫ ∞
0 F(u)/s2 ds∫ ∞

0 u′2(s) ds
(7)

with F(u) = ∫ u
0 f (x) dx , and the supremum should be considered on an appropriate function space.
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Our strategy here (see Sec. II below) is to prove that under weak regularity conditions on the
profile f(u), the supremum of (7) is attained and that the maximizer satisfies precisely (6). For
C1 profiles (in which case the existence of the heteroclinic orbit had already been established by
Aronson and Weinberger), the connection between the variational principle and the Euler equation
(5) was established in Refs. 2 and 4. In Sec. III, we explicitly determine the maximizing function
for the profile

fL (u) = 0, for u ≤ ε, and 0 ≤ fL (u) = u for ε < u < 1. (8)

In view of the KPP type conditions (4) required on f(u) we have that

f (u) ≤ fL (u),

for all 0 ≤ u ≤ 1. The profile fL(u) falls into the class studied in Sec. II, and thus the existence of a
minimizer follows at once. If we denote by c2

L the value of the supremum of (7) when we replace F
by FL (u) = ∫ u

0 fL (x) dx , one can explicitly compute (see Sec. III below),

cL ≡ 2 sin φ∗, (9)

where φ∗ is the first positive solution of the equation,

φ∗ tan φ∗ = 1

2
| log ε|. (10)

In particular, for ε → 0, we have,

cL = 2 − π2

| log ε|2 + o

(
1

| log ε|2
)

.

Since f(u) ≤ fL(u), for all 0 ≤ u ≤ 1 it follows from the variational principle (7) that

0 ≤ c2 ≤ c2
L . (11)

On the other hand, using proper trial functions for u in (7) one can get sharp lower bounds on c2.
Our main result, concerning upper and lower bounds for the minimal speed for profiles satisfying
(4) is the following theorem:

Theorem 1.1: Consider the reaction diffusion equation (1) where the reaction profile satisfies
(4). Let N(u) = fL(u) − f(u), all u ∈ [0, 1], where fL(u) is given by (8). Moreover, assume N(u)
≤ B(u − ε)1 + η, for ε ≤ u ≤ 1, where η > 0. Then, the minimal speed of propagation of monotonic
fronts of the reaction diffusion equation (1), c, satisfies,

0 ≤ c2
L − c2 ≤ o

(
1

| log ε|2
)

. (12)

Here, cL is given explicitly by (9) and (10). In particular, for ε → 0, we have,

cL = 2 − π2

| log ε|2 + o

(
1

| log ε|2
)

Remark: Although in principle the interest is focused on small values of the parameter ε, our
expression for cL = 2sin φ∗ is valid for any 0 ≤ ε < 1. In fact, one can also consider the interesting
case ε → 1. In that case, the profile fL is peaked around u = 1, which is the typical situation that
arises in the propagation of flames (first studied in Ref. 17). For the case of profiles f(u) peaked
around u = 1, the speed of fronts is approximately given by

cZ F K =
√

2
∫ 1

0
f (u)du,

(see, Ref. 17; it turns out that this expression cZFK for the speed of the traveling fronts is actually a
lower bound to the actual speed c, see Refs. 8 and 3). Using the ZFK expression for the profile fL(u),
one has,

cZ F K =
√

1 − ε2 ≈
√

2(1 − ε),
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as ε → 1. On the other hand, as ε → 1, |log ε| = |log (1 + (ε − 1)| ≈ 1 − ε, approaches zero.
Using (10), we see that also tan φ∗ ≈ 0 in this case, and we have sin φ∗ ≈ tan φ∗ ≈ φ∗. Hence, from
(10),

φ2
∗ ≈ 1

2
(1 − ε)

and thus,

c = 2 sin(φ∗) ≈ 2φ∗ =
√

2(1 − ε)

which coincides with the ZFK value.
The rest of the paper is organized as follows: in Sec. II, we put in a rigorous mathematical

framework the maximizing principle (7), for a rather general class of profiles with minimal regularity
properties (in particular allowing for jumps, which are necessary when one considers the Brunet–
Derrida type problems). We prove the existence of a unique maximizer, and we prove that this
maximizer satisfies the Euler equation (6). As we mentioned above, the mathematical results proven
in Sec. II, let us show the existence of the appropriate heteroclinic orbit characterizing the minimal
speed of monotone traveling fronts. In Sec. III, we give an explicit expression for the minimizer
of the linear problem, i.e., of the variational principle associated to the linear profile fL(u), and we
compute in closed form the value of the maximum, c2

L , in this case. Finally, in Sec V, we prove our
main result (i.e., Theorem 1.1) and, in particular we provide error bounds for c. A preliminary report
on these results was announced in Ref. 6.

II. EXISTENCE OF TRAVELING WAVES

In this section we prove the existence and uniqueness of the traveling wave under suitable
assumptions on the profile f. As we shall see, the existence of a maximizer which is distinct from the
existence of a traveling wave solution can be achieved under rather general assumptions. To prove
existence and uniqueness of traveling waves is more difficult and we are able to do this only under
more restrictive assumptions that nevertheless include discontinuous profiles.

We look for the existence of a maximizer for the functional

F(u) = 2

∫ ∞
0

F(u(s))
s2 ds∫ ∞

0 u′(s)2ds
(13)

in the class of functions u : R+ → [0, 1] with u(0) = 0, u increasing, lims→∞u(s) = 1 and such that
the weak derivative u′ ∈ L2([0, ∞)). We denote this set of functions by C. Note that the functional
F(u) is scale invariant in the sense that if we replace u(s) by v(s) = u(αs) then F(u) = F(v). It is
convenient to relax the domain and consider F on the set C< that consists of all monotone increasing
functions u(s) with u(0) = 0, lims → ∞u(s) ≤ 1 and u′ ∈ L2([0, ∞)).

One of the main assumptions is that the function

F(u) :=
∫ u

0
f (v)dv

satisfies ∫ 1

0

F(
√

s)

s2
ds < ∞.

Note that f of the form given in (4) satisfies these assumptions. This condition is violated in cases
where the KPP criterion is satisfied, i.e., f(u) ≤ f ′(0)u for all u ∈ [0, 1]. For these cases there does
not exist a maximizer. Indeed, consider the sequence

un(s) =
{(

s
n

)α
if 0 ≤ s ≤ n

1 if n ≤ s

where α > 1/2. In this case it is easily seen that

lim
n→∞F(un) = 2

α
f ′(0).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

146.155.94.33 On: Wed, 03 Dec 2014 11:07:45



123705-5 Benguria, Depassier, and Loss J. Math. Phys. 53, 123705 (2012)

Hence, the supremum over α > 1/2 is 4f ′(0) giving the precise KPP speed. There is, however no
maximizer. It is interesting to note that the maximum is entirely determined by the behavior of the
f(u) for small values of u, in which case the functional reduces to

f ′(0)

∫ ∞
0

u(s)2

s2 ds∫ ∞
0 u′(s)2ds

,

which is bounded above by 4f ′(0) by Hardy’s inequality (see Ref. 10).

Theorem 2.1: Assume that f(u) is non-negative and lower semicontinuous and that the
functionF(u) = ∫ u

0 f (v)dv satisfies ∫ 1

0

F(
√

s)

s2
ds < ∞.

Then there exists a function u ∈ C< such that

F(u) = sup
v∈C<

F(v) =: M. (14)

Moreover, for any smooth non-negative function h with support in the open set

Z = {s ∈ (0,∞) : u(s) < 1},

−2M
∫ ∞

0
u′(s)h′(s)ds +

∫ ∞

0

f (u(s))h(s)

s2
ds ≤ 0. (15)

In particular the function u is a concave function on Z.

Proof: Let un be a maximizing sequence, i.e.,

F(un) → M, (16)

which at this moment we do not assume to be finite. By scaling we may assume that
∫ ∞

0 u′
n(s)2ds = 1.

It is a standard estimate that

|un(x) − un(y)| ≤ |x − y|1/2

√∫ ∞

0
u′

n(s)2ds = |x − y|1/2, (17)

in particular

un(s) ≤ √
s.

Therefore,

0 ≤ F(un(s)) ≤ F(
√

s)

s2
,

where the right side, by assumption, is integrable on [0, 1]. Hence∫ ∞

0

F(un(s))

s2
ds ≤

∫ 1

0

F(
√

s)

s2
ds +

∫ ∞

1

F(1)

s2
ds =

∫ 1

0

F(
√

s)

s2
ds + F(1)

and M < ∞. By (17), the functions un are uniformly continuous. Since the functions un are uniformly
bounded, by the Theorem of Arzela and Ascoli we can pass to a subsequence, again denoted by un,
which converges uniformly on any finite subinterval of [0, ∞) to some function u. This function
is in C< since the point-wise limit of monotone functions is monotone. The sequence F(un(s)) is
uniformly bounded by an integrable function and using the dominated convergence theorem

lim
n→∞

∫ ∞

0

F(un(s))

s2
ds =

∫ ∞

0

F(u(s))

s2
ds, (18)
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and

lim inf
n→∞

∫ ∞

0
u′2

n ds ≥
∫ ∞

0
u′2ds (19)

by the weak lower semicontinuity of the L2-norm. Thus

M = lim
n→∞F(un) ≤ F(u) (20)

and u is a maximizer in C<. In particular
∫ ∞

0 u′2ds = 1.
By the assumption on h we have for t sufficiently small 0 < u + th < 1 on Z. The following

general remark is useful. Let v be a function with 0 ≤ v(s) ≤ 1, v(0) = 0,
∫ ∞

0 v′(s)2ds < ∞, but
not necessarily monotone. Consider the function

uv(s) = min{
∫ s

0
max{v′(t), 0}dt , 1}. (21)

Clearly, this function is in C<. Further, uv ≥ v pointwise, so that F(v) ≤ F(uv). By construction
‖u′

v‖2 ≤ ‖v′‖2 and hence

F(v) ≤ F(uv). (22)

Thus,

F(u + th) ≤ F(uu+th) ≤ F(u)

and the function t → F(u + th) has a maximum at t = 0. Since f is lower semi-continuous we have
that

1

t

∫ u(s)+th(s)

u(s)
f (v)dv ≥ f (v(s, t))h(s),

where

f (v(s, t)) = min
u(s)≤v≤u(s)+th(s)

f (v).

As t → 0, v(s, t) converges to u(s) and hence again by the lower semi-continuity of f

lim inf
t→0

1

t

∫ u(s)+th(s)

u(s)
f (v)dv ≥ f (u(s))h(s).

By Fatou’s lemma

lim inf
t→0

∫ ∞

0

1

t

∫ u(s)+th(s)

u(s)
f (v)dv

1

s2
ds ≥

∫ ∞

0
f (u(s))h(s)

1

s2
ds,

and hence,

0 ≥ lim inf
t→0

F(u + th) − F(u)

t
≥ −2M

∫ ∞

0
u′(s)h′(s)ds +

∫ ∞

0

f (u(s))h(s)

s2
ds, (23)

where we have used, conveniently, that
∫ ∞

0 u′(s)2ds = 1. Thus, the second derivative of u in the
weak sense is non-positive on Z and from this it follows that u is concave on Z. �

Remark 2.2: The inequality (15) has another interesting consequence. It is a priori not clear
that the function f (u(s))

s2 is locally integrable. As an example, consider the function

f (v) =
{

1 ifv = 3/4

( 1
|v−3/4|1/2 − 3/2)+ ifv = 3/4

. (24)

This function satisfies all the conditions required. Assume now that near s = 1 the function u(s) is of
the form

u(s) = 3

4
+ (s − 1)3.
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Then

f (u(s)) = (
1

|s − 1|3/2
− 3/2)+

which is not integrable at s = 1. Inequality (15) states that the maximizer u(s) ‘adjusts’ itself as to
render f(u(s)) integrable and hence the function u(s) displayed above cannot be a maximizer.

Theorem 2.3: With the same assumptions on f as in Theorem 2.1, let u be a maximizer. If u(s)
< 1 for all s ∈ [0, ∞), then lim infv<a,v→a f (v) = f (a) = 0 where a = lims → ∞u(s) ≤ 1. If in
addition we assume that the support of f (which is defined since f is lower semi-continuous), is an
interval of the form [ε, 1] for some 0 ≤ ε < 1. Then lims → ∞u(s) = 1 and hence u ∈ C. In particular

F(u) = sup
v∈C

F(v) = sup
v∈C<

F(v) =: M. (25)

Proof: Since u(s) < 1 for all s ∈ [0, ∞) the inequality (15) applies with Z = (0, ∞). Pick
0 ≤ φε ∈ C∞

c (−ε, ε) with
∫
φεdx = 1 and set wε = φε ∗ u. Then for all k ∈ C∞

c ((ε,∞)) we have

2M
∫ ∞

0
w′

ε(s)k ′(s)ds +
∫ ∞

0
(φε ∗ f (u)

s2
)(s)k(s)ds ≤ 0

or

2Mw′′
ε + (φε ∗ f (u)

s2
)(s) ≤ 0.

Integrating this inequality from s to ∞ using the fact that u′ and hence w′ tends to zero, we find

2Mw′
ε(s) ≥

∫ ∞

s
(φε ∗ f (u(s))

s2
)(t)dt =

∫
R

φε(t)
∫ ∞

s

f (u(σ − t))

(σ − t)2
dσdt.

Since u(s) is increasing towards its limit a

lim inf
s→∞ f (u(s)) = lim inf

v<a,v→a
f (v),

and thus

lim inf
s→∞ sw′

ε(s) ≥ lim infv<a,v→a f (v)

2M
.

If the right side was not zero this would imply that wε(s) diverges logarithmically fast as s → ∞
which is contradiction since lims→∞ wε(s) = lims→∞ u(s) = a. Hence lim infv<a,v→a f (v) = 0.
Since f is lower semi-continuous, lim infv<a,v→a f (v) ≥ f (a) and since f is non-negative,
lim infv<a,v→a f (v) = f (a) = 0. The other statements are an immediate consequence of this and
Theorem 2.1, since lims → ∞u(s) > ε for otherwise M = 0. �

Thus, we have established the existence of an optimizer. In practice one has compute these
optimizers by solving a non-linear second order differential equation. Thus, our goal is to establish
this equation and to show that the solutions are essentially unique. We shall do so by assuming that
the profile f vanishes on the interval [0, ε] and is strictly positive, bounded and lower semi-continuous
on the interval (ε, 1). It is easy to see that all the assumptions of Theorems 2.1 and 2.3 are satisfied
under these new assumptions.

Lemma 2.4: Assume that f vanishes on the interval [0, ε] for some 0 < ε < 1 and is strictly
positive, bounded and lower semi-continuous on the interval (ε, 1). Then the optimizer u ∈ C satisfies
the equation ∫ t

s

f (u(y))

y2
dy = 2M[u′(s) − u′(t)], (26)

for all s, t ∈ Z = {x ∈ (0, ∞): u(x) < 1}. In particular the function u′ is continuous on Z. Moreover,
on every compact subset C of Z there exists a constant c > 0 such that u′(s) ≥ c for all s ∈ C.
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Proof: Pick the “bump” function 0 ≤ φε ∈ C∞
c (−ε, ε) with

∫
φ(x)dx = 1 and consider the

function

h(x) =
∫ x

−∞
[φε(s − y) − φε(t − y)]dy,

which is non-negative and for ε sufficiently small in C∞
c (Z ). Using (15) and a simple limiting

argument as ε → 0 we find that∫ t

s

f (u(y))

y2
dy ≤ 2M[u′(s) − u′(t)] (27)

holds for almost all s, t ∈ Z. From this it follows that the function f(u(y))/y2, which is a lower
semi-continuous function, is integrable and hence the left side of (27) for fixed s is an absolutely
continuous, monotone function in t or vice versa. Moreover, the function u′(s) is decreasing and
hence can have at most a countable number of points where it is discontinuous. At all the other
points (27) is satisfied. Write Z = (0, s0) where s0 could be infinity. It follows from (27) that

2Mu′(s) ≥
∫ t

s

f (u(y))

y2
dy

and by letting t → s0 we have that

2Mu′(s) ≥
∫ s0

s

f (u(y))

y2
dy.

The right side is strictly positive for all s < s0 and since u′(s) is decreasing we find that u′(s)
> c > 0 on any compact subset of Z. To derive the differential equation for u we have to compute

lim
t→0

∫ ∞

0

1

t

∫ u(s)+th(s)

u(s)
f (v)dv

1

s2
ds,

with h ∈ C∞
c (Z ) not necessarily positive. The problem is that for u constant the limit

lim
t→0

1

t

∫ u+th(s)

u
f (v)dv = f (u)h(s) (28)

might not exist. It exists only for almost every u. By Lemma 2.4 u′(s) ≥ c > 0 on any compact subset
of Z. Thus, the inverse function of u exists and is Lipschitz. If A ⊂ (0, 1) is the set of zero measure
where (28) fails, then

B = {s ∈ Z : u(s) ∈ A}
is also a set of zero measure (Sard’s theorem). Hence

lim
t→0

1

t

∫ u(s)+th(s)

u(s)
f (v)dv = f (u(s))h(s)

for almost every s ∈ Z. It remains to justify the interchange of this limit with the s-integration. Since
f is bounded, the integrand

1

t

∫ u(s)+th(s)

u(s)
f (v)dv

1

s2
≤ const.

s2
,

and we have by the dominated convergence theorem that

lim
t→0

∫ ∞

0

1

t

∫ u(s)+th(s)

u(s)
f (v)dv

1

s2
ds =

∫ ∞

0
f (u(s))h(s)

1

s2
ds.

A straightforward computation shows that

−2M
∫

u′(s)h′(s)ds +
∫ ∞

0
f (u(s))h(s)

1

s2
ds = 0
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for all functions h ∈ C∞
c (Z ). Using the “bump” function argument as before, we obtain∫ t

s

f (u(y))

y2
dy = 2M[u′(s) − u′(t)],

for almost all s, t ∈ Z. Assume that u(s) is discontinuous at some z0 ∈ Z, i.e, lims→z0,s>z0 u(s)
− lims→z0,s<z0 u(s) = C where C is a positive constant. Since the number of points where u(s) is not
continuous is countable and since (26) holds for almost all s, t ∈ Z we find a sequence tn > s0 with
tn → s0 and sn < s0 and sn → s0 along which (26) holds. Since the left side of (26) is continuous we
find that C must vanish. Hence (26) holds for all s, t in Z. �

Lemma 2.5: Assume that f vanishes in the interval [0, ε] for some 0 < ε < 1 and is strictly
positive, bounded, and lower semi-continuous on (ε, 1). Further assume that limv<1,v→1 f (v) exists
and is positive. Then there exists z0 < ∞such that u(s) < 1 on [0, s0), u(s) = 1 for s ≥ s0 and u′(s0)
= 0.

Proof: By Theorem 2.3 we know that there must exist a finite number s0 beyond which u(s)
= 1. It remains to show that u′(s0) = 0. By (26) we know that c := lims<s0,s→s0 u′(s) exists. Assume
that this limit is strictly positive. Then since u′(s) is decreasing, we have that u′(s) ≥ c for all s ∈ [0,
s0]. Let h ∈ C∞

c (0,∞) be non-negative. Then for t > 0 we know by the arguments in the proof of
Theorem 2.3 that F(u) ≥ F(u − th) and hence by a simple computation

0 ≤ lim
t→0

∫ ∞

0

1

t

∫ u(s)

u(s)−th(s)
f (v)dv

1

s2
ds − 2M

∫ ∞

0
u′(s)h′(s)ds (29)

provided the limit exists. Since the limit limv<1,v→1 f (v) exists we have that

lim
t→0

∫ ∞

s0

1

t

∫ 1

1−th(s)
f (v)dv

1

s2
ds =

∫ ∞

s0

f (u(s))h(s)
1

s2
ds.

Likewise, by the same arguments as in the proof of Lemma 2.4 the limit

lim
t→0

∫ s0

0

1

t

∫ u(s)

u(s)−th(s)
f (v)dv

1

s2
ds

exists since u′(s) ≥ c > 0. Hence∫ ∞

0
f (u(s))h(s)

1

s2
ds − 2M

∫ ∞

0
u′(s)h′(s)ds ≥ 0.

Next we pick h. Let φε(y) be the usual “bump” function, i.e., smooth, non-negative, supported in
[ − ε, ε] with integral 1 and define for s < s0 < t

hε(x) =
∫ x

−∞
[φε(s − y) − φε(t − y)]dy

which is in C∞
c (0,∞). As ε → 0 we find that∫ ∞

0
f (u(s))hε(s)

1

s2
ds →

∫ t

s

f (u(s))

s2
ds

for almost all s, t and that

2M
∫ ∞

0
u′(y)h′

ε(y)dy = 2M
∫ ∞

0
u′(y)[φε(s − y) − φε(t − y)]dy → 2Mu′(s).

We use here the fact that u′(y) is continuous for y < s0 and that u′(t) = 0. Hence∫ t

s

f (u(s))

s2
ds ≥ 2Mu′(s)
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for almost all t > s0. Letting t tend to s0 we find using (26) that

0 ≥ 2Mu′(s) −
∫ s0

s

f (u(s))

s2
ds ≥ 2Mu′(s0)

which contradicts the assumption that u′(s0) > 0. �
To obtain uniqueness of the solution of Eq. (26) we need some drastic assumptions on f which,

however, include our discontinuous profiles.

Theorem 2.6: Let f be a function that vanishes on the interval [0, ε] and is strictly positive
and uniformly Lipschitz on the interval (ε, 1). Then there exists a unique solution u ∈ C of Eq. (26)
which satisfies the normalization u(ε) = ε.

Proof: Since the functional (13) as well as C are invariant under scaling we may assume that
the solution u satisfies u(ε) = ε. Since f vanishes on the interval [0, ε] we infer from (26) that u′ is
constant on the interval [0, ε] and hence, since u(ε) = ε, we have that u′(s) = 1 on [0, ε]. Since f
is uniformly Lipschitz on (ε, 1) Eq. (26) has a unique solution with the initial conditions u(ε) = ε,
u′(ε) = 1 on the set Z. Note that the set Z is uniquely specified by the initial conditions. �

Lemma 2.7: Let u be a maximizer of the functional F(u) with the profile given by the function

f (v) =
{

0 if 0 ≤ v ≤ ε

v if ε < v < 1
. (30)

Then

s0 = inf{s : u(s) = 1} (31)

is finite and u′(s0) = 0. If we assume that u is normalized such that u(ε) = ε then on the interval (0,
ε], u(s) = s and on the interval (ε, s0]the function u(s) is of the form

u(s) = √
s A cos(

1

2

√
2/M − 1) log s + δ) (32)

for suitable constants A and δ. Finally, on (s0, ∞), u(s) ≡ 1.

Proof: The existence follows from Theorem 2.3. That s0 is finite follows from Lemma 2.5.
Finally the form of u given in (32) follows from a straightforward calculation. �

III. THE MAXIMIZER

In this section we determine explicitly the optimizer, whose existence was established in
Sec. II.

Theorem 3.1: The unique maximizer is given by

u(s) =
{

s if 0 ≤ s ≤ ε

A
√

s cos(φ(s)) if ε < s < s0
(33)

with

A =
√

ε

cos(φ∗)
s0 = 1

ε
(34)
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and

φ(s) = 1

2
cot(φ∗) log(

s

ε
) − φ∗. (35)

Here φ∗ is the first positive solution of the equation

φ∗ tan(φ∗) = 1

2
| log(ε)|. (36)

Moreover, we have

M =: sup
v∈C

F(v) = F(u) = 2 sin2 φ∗. (37)

Proof. In a first step we show that

s0 = 1

ε
. (38)

We know by Lemmas 2.1 and 2.7 that there exists a maximizer with the following properties:

u(ε) = ε u(s0) = 1 u′(s0) = 0. (39)

Since u′(s) is continuous and u(s) = s for s ≤ ε we also have

u′(ε) = 1. (40)

Moreover, on the interval [ε, s0] the function u(s) is positive and increasing and has the form

u(s) = √
s A cos

(
1

2

√
2

M
− 1 log s + δ

)
, (41)

where M = F(u), the maximal value of the functional. Note that by (36) and (37) M < 2.
Since u(ε) = ε and u′(ε) = 1 we have, using (41)

√
ε = A cos

(
1

2

√
2

M
− 1 log ε + δ

)
(42)

−√
ε = A

√
2

M
− 1 sin

(
1

2

√
2

M
− 1 log ε + δ

)
. (43)

Similarly, from the fact that u(s0) = 1 and u′(s0) = 0 we get from (41)

1 = √
s0 A cos(

1

2

√
2

M
− 1 log s0 + δ), (44)

1 = √
s0 A

√
2

M
− 1 sin(

1

2

√
2

M
− 1 log s0 + δ). (45)

Next we prove (36), i.e., we calculate F(u) = M . A straightforward calculation yields for the
numerator∫ ∞

0

[u(s)2 − ε2]

s2
ds (46)

= A2

2

⎛
⎝log

s0

ε
+ 1√

2
M − 1

(sin(

√
2

M
− 1 log s0 + 2δ) − sin(

√
2

M
− 1 log ε + 2δ)

⎞
⎠ . (47)
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Likewise, for the denominator

2
∫ ∞

0
u′(s)2ds = 2ε + A2

2M
log

s0

ε
(48)

+ A2

2
(1 − 1

M
)

1√
2
M − 1

(
(sin(

√
2

M
− 1 log s0 + 2δ) − sin(

√
2

M
− 1 log ε + 2δ)

)
(49)

+ A2

2

(
cos(

√
2

M
− 1 log s0 + 2δ) − cos(

√
2

M
− 1 log ε + 2δ)

)
. (50)

The equation ∫ ∞

0

[u(s)2 − ε2]

s2
ds = M

(
2
∫ ∞

0
u′(s)2ds

)

then reduces to

0 = 2ε − A2

2

√
2

M
− 1

(
sin(

√
2

M
− 1 log s0 + 2δ) − sin(

√
2

M
− 1 log ε + 2δ)

)
(51)

+ A2

2

(
cos(

√
2

M
− 1 log s0 + 2δ) − cos(

√
2

M
− 1 log ε + 2δ)

)
. (52)

Using (42)–(45) together with the double angle formulas for cosine and sine one easily sees that the
above equation reduces to (

ε − 1

s0

) (
2

2 − M

)
= 0, (53)

and hence (38) is proved.
The next step is to calculate M. Note that (44) and (45) now read

1 = 1√
ε

A cos(−1

2

√
2

M
− 1 log ε + δ), (54)

1 = 1√
ε

A

√
2

M
− 1 sin(−1

2

√
2

M
− 1 log ε + δ). (55)

from which we deduce that

tan(
1

2

√
2

M
− 1 log ε − δ) = − 1√

2
M − 1

. (56)

Likewise from (42) and (43) we obtain

tan(
1

2

√
2

M
− 1 log ε + δ) = − 1√

2
M − 1

. (57)

Using the addition formula for the tangent function yields

tan(

√
2

M
− 1 log ε) = − tan(

√
2

M
− 1| log ε|) = −

√
2
M − 1

1
M − 1

. (58)
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If we set

φ∗ = 1

2

√
2

M
− 1| log ε| (59)

and note that

tan(

√
2

M
− 1| log ε|) = 2 tan φ∗

1 − (tan φ∗)2
, (60)

we learn that

tan φ∗ = 1√
2
M − 1

= | log ε|
2φ∗

, (61)

which yields (36). Since φ∗ > 0 and M is the maximum of our functional, we have to choose φ∗ to
be the first positive solution of (36). In particular we have that φ∗ < π /2.

It remains to determine δ and A. Subtracting (56) from (57) we find that

tan(2δ) = 0 (62)

and hence δ = Nπ /2 where N ∈ Z. Note that as s ranges from ε to 1/ε, the function

1

2

√
2

M
− 1 log s

varies from − φ∗ to φ∗. The function u(s) is positive and increasing and hence, if we choose the
constant A positive, we find that δ = 2πN where N ∈ Z. Hence we may choose δ = 0. The function
1
2

√
2
M − 1 log s can be conveniently be written as

1

2

√
2

M
− 1 log s = 1

2
cot φ∗ log

s

ε
− φ∗ (63)

and the condition that u(ε) = ε yields the value for the constant A stated in Theorem 3.1. Finally,
Eq. (37) for the value of M follows immediately from the first equality in (61). �
IV. ERROR ESTIMATES: PROOF OF THEOREM 1.1

In Sec. III we have determined the exact value of the minimal speed, cL say, of monotonic
traveling fronts of Eq. (1) for a linear profile with a cutoff. In fact, if the profile is given piecewise
by f(u) = 0, for u < ε, and f(u) = u for ε ≤ u ≤ 1, we have shown that cL is given exactly by

cL = 2 sin φ∗, (64)

where φ∗ is the first positive solution of the equation

φ∗ tan φ∗ = 1

2
| log ε|. (65)

Solving (65) for φ∗ in power series on 1/|log ε|, and replacing it in (64) one finds that

cL = 2 − π2

| log ε|2 + o

(
1

| log ε|2
)

,

where the leading two terms account precisely for the Brunet and Derrida result (i.e., Eq. (3) in the
Introduction).

Here, we would like to determine error bounds when the profile f(u) is a KPP profile with a
cutoff, in other words, when the profile is given piecewise by f(u) = 0, for 0 ≤ u < ε, and f(u) ≤ u
for ε ≤ u ≤ 1. If we write f(u) = u − N(u), for ε ≤ u ≤ 1, the KPP criterion amounts to requiring
that N(u) ≥ 0. For such a reaction profile, we have that

F(u) ≡
∫ u

0
f (q) dq,
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is such that F(u) = 0 for 0 ≤ u ≤ ε, whereas

F(u) = 1

2
(u2 − ε2) −

∫ u

ε

N (q) dq,

for ε ≤ u ≤ 1. For a KPP profile N(u) ≥ 0, thus,

F(u) ≤ G(u), (66)

where

G(u) = 1

2

(
u2 − ε2

)
+ .

Hence, using (66) in (13), and, taking into account (37), we see that in general for a KPP profile
with a cutoff, the speed of propagation of fronts for an initially localized disturbance of (1), say c,
satisfies,

c ≤ cL .

On the other hand, we can also use the variational principle embodied in (13) to obtain a lower
bound on c. For that purpose we use as a trial function in (13) the minimizer û of the functional G.
After some simple computations, we obtain,

c2
L − c2 ≤

∫ 1/ε

ε
N (û(s))û′(s)(1/s) ds∫ 1/ε

0 (û′(s))2 ds
. (67)

Here, we will find estimates on the difference c2
L − c2 for profiles that satisfy the bound,

0 ≤ N (x) ≤ B(x − ε)1+η (68)

for ε ≤ x ≤ 1, where η > 1. The denominator can be calculated in closed form as follows:

Den = ∫ 1/ε

0 (û′(s))2 ds = ε + ∫ 1/ε

ε
(û′(s))2 ds

= ε + ε
4 cos2 φ∗ sin2 φ∗

sin φ∗
cos φ∗

∫ φ∗
−φ∗

2 sin(φ∗ − t)2 dt

= ε + ε
4 cos2 φ∗ sin2 φ∗

sin φ∗
cos φ∗

∫ φ∗
−φ∗

(1 − cos(2φ∗ − 2t)) dt

= ε + ε
4 cos2 φ∗ sin2 φ∗

sin φ∗
cos φ∗

(2φ∗ − (1/2) sin 4φ∗)

= ε 1
4 cos3 φ∗ sin φ∗

(2φ∗ + sin 2φ∗) . (69)

On the other hand, using (68) in the numerator of (67), the properties of the trial function û(s) (in
particular the fact that this function is increasing), we can estimate the numerator as,

Num ≤ B
√

ε

2 cos φ∗ sin φ∗

∫ 1/ε

ε

(√
εs

cos φ

cos φ∗
− ε

)1+η

sin(φ∗ − φ)
ds

s3/2
. (70)

Using the fact that s = exp (2φ tan φ∗) (which follows from (35) and (36) above) and that we can
write

√
ε = exp ((log ε)/2) = exp (−| log ε|/2) = exp (−φ∗ tan φ∗), we have that

√
sε = exp [(φ − φ∗) tan φ∗],

and also that

ds

s3/2
= 2

√
ε tan φ∗ exp ((φ∗ − φ) tan φ∗).

Changing the variable of integration from s to φ in (70), making use of these last two expressions,
we find

Num ≤ Bε

cos2 φ∗

∫ φ∗

−φ∗

(
exp [−(φ∗ − φ) tan φ∗]

cos φ

cos φ∗
− ε

)1+η

sin(φ∗ − φ) exp (φ∗ − φ) tan φ∗) dφ.

(71)
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Finally making the change of variables φ → σ = φ∗ − φ we get

Num ≤ Bε

cos2 φ∗

∫ 2φ∗

0

(
exp [−σ tan φ∗]

cos(φ∗ − σ )

cos φ∗
− ε

)1+η

sin σ exp (σ tan φ∗) dσ. (72)

Hence, from (69) and (72), we have,

Num

Den
≤ 4 B

cos φ∗ sin φ∗
2φ∗ + sin(2φ∗)

I, (73)

with,

I =
∫ 2φ∗

0

(
exp [−σ tan φ∗]

cos(φ∗ − σ )

cos φ∗
− ε

)1+η

sin σ exp (σ tan φ∗) dσ. (74)

When ε → 0, we have from (36) that φ∗ ≈ π /2, sin φ∗ ≈ 1, sin (2φ∗) ≈ 0 and cos φ∗ = O(1/|log ε|).
Thus, in order to control the difference c2

L − c2, all we have to prove is that

I ≤ o (1/| log ε|) .

We can estimate I from above by dropping the ε inside the factor in the integral above. Moreover,
we write cos (φ∗ − σ )/cos φ∗ = cos σ + tan φ∗ sin σ . Thus, we have

I ≤ J ≡
∫ 2φ∗

0
(cos σ + tan φ∗ sin σ )1+η sin σ exp (−ση tan φ∗). dσ. (75)

We now split the integral over σ into two parts. We denote by J1 the integral between 0 and α and
by J2 the integral between α and 2φ∗. The value of α will be conveniently chosen later on. We will
first estimate J1. We use: (i) exp ( − σηtan φ∗) ≤ 1 (since tan φ∗ > 0); (ii) cos σ ≤ 1, and (iii) sin σ

≤ σ ≤ α to get

J1 ≤
∫ α

0
(1 + α tan φ∗)1+η σ dσ = α2

2
(1 + α tan φ∗)1+η , (76)

and, using the convexity of x → x1 + η (since η > 0), we have

J1 ≤ 2η−1
[
α2 + α3+η(tan φ∗)1+η

]
. (77)

On the other hand, in order to estimate J2, we use the fact that 0 ≤ cos σ , sin σ ≤ 1 in the interval
[0, φ∗] (recall that φ∗ ≤ π /2). We also use that exp ( − x) is decreasing, and we get at once

J2 ≤ (1 + tan φ∗)1+η exp(−αη tan φ∗) 2φ∗, (78)

Pick any 0 < r < 1, and then choose α to be

α = (tan φ∗)−(2+η+r )/(3+η). (79)

The idea behind this choice is that it will make J1 = o(1/|log ε|), and at the same time it will make
J2 of smaller order. Now, one can easily check that, for any 0 < r < 1,

2

(
2 + η + r

3 + η

)
> 1 + r. (80)

Now, since for ε small, tan φ∗ > 1, it follows from (77), our choice of α (i.e., Eq. (79)), and (80)
that,

J1 ≤ 2η(tan φ∗)−(1+r ). (81)

Finally, using (36) in (81), and the fact that r > 0, we get the desired estimate,

J1 = o

(
1

| log ε|
)

. (82)

Also, with our choice of α, (79),

α tan φ∗ = (tan φ∗)(1−r )/(3+η) ,
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where r > 1 and η > 0. Using (78), we see that J2 is exponentially small as a function of 1/|log ε|
(the first factor grows polynomially as a function of tan φ∗, while the second factor is exponentially
small). Summarizing, we have proven that

0 ≤ c2
L − c2 ≤ o

(
1

| log ε|2
)
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APPENDIX: ERROR ESTIMATES

For the sake of completeness, in this appendix we prove bounds on c2
L − c2 in terms of the

parameter η, for KPP profiles. These bounds allow us to show that as η → ∞, c2
L − c2 → 0.

Consider,

J =
∫ 2φ∗

0
(cos σ + tan φ∗ sin σ )1+η sin σ exp (−ση tan φ∗) dσ. (A1)

Denote by

H ≡ σ tan φ∗ − log(cos σ + tan φ∗ sin σ ) (A2)

and notice that

Hσ ≡ d H

dσ
= sin σ

(1 + tan2 φ∗)

(cos σ + tan φ∗ sin σ )
> 0.

Using (A1) and (A2), we can write,

J =
∫ 2φ∗

0
(cos σ + tan φ∗ sin σ ) exp (−ηH ) sin σdσ, (A3)

which can be rewritten as,

J = 1

1 + tan φ2∗

∫ 2φ∗

0
(cos σ + tan φ∗ sin σ )2 exp (−ηH ) Hσ dσ. (A4)

We have remarked before that on the interval (0, 2φ∗), both 0 < cos σ , sin σ < 1, thus (cos σ

+ tan φ∗ sin σ )2 ≤ (1 + tan φ∗)2. Moreover, using that (1 + x)2/(1 + x2) ≤ 2 for x ≥ 0, we can
finally write,

J ≤ 2
∫ 2φ∗

0
e−Hη Hσ dσ.

Recalling that Hσ > 0, making the change of variables φ → H, and computing H(0) = 0 and H(2φ∗)
= 2φ∗ tan φ∗ we get

J ≤
∫ 2φ∗ tan φ∗

0
e−Hη d H ≤ 2

η
(1 − exp (−2ηφ∗ tan φ∗)) ≤ 2

η
. (A5)

Hence, J → 0 as η → ∞.
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