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Fifth order evolution equation for long wave dissipative solitons
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Third and fifth order nonlinear wave equations which arise in the theory of water waves possess solitary
and periodic traveling waves. Solitary waves also arise in systems with dissipation and instability where
a balance between these effects allows the existence of dissipative solitons. Here we search for a model
equation to describe long wave dissipative solitons including fifth order dispersion. The equation found
includes quadratic and cubic nonlinearities. For periodic solutions in a small box we characterize the
rate of growth, and show that they do not blow up in finite time. Analytic solutions are constructed for
special parameter values.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Dissipative solitons or solitary waves in systems with dissipa-
tion and instability, arise in fluid dynamics, optics, waves in solids
and other physical problems [1]. In cases where a long wavelength
oscillatory instability is present, the evolution of small amplitude
perturbations can be described by the Kawahara equation or by
the Korteweg–deVries–Kuramoto–Sivashinsky (KdV–KS) equation.
These are fourth order evolution equations including as a single
nonlinearity a convective term. However, the KdV equation with
its characteristic nonlinearity is one of many long wave evolution
equations that have been derived from the theory of water waves
[2–4]. Many of these equations count among its solutions traveling
solitary waves. The purpose of this work is to find a higher or-
der evolution equation for dissipative solitons, that is, to construct
the analog of higher order water wave equations, for problems
that include instability and dissipation. The addition of a higher
order dispersion term to the KdV–KS equation has been done pre-
viously including a fifth order derivative to the equation [5,6]. In
the present work we include high order dispersion taking into ac-
count the fact that in a physical problem the presence of a higher
order linear term will be accompanied by additional nonlinearities
to be determined by a consistent asymptotic expansion. We choose
as a model problem that of flow along an inclined plane, and find
that the amplitude η(x, t) of long surface waves is determined by
the perturbed KdV equation
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ητ + 6ηηξ + (
Λ1 + ε2 R2Λ

′
1

)
ηξξξ

+ ε

(
6

5
R2ηξξ + Λ2ηξξξξ + Λ3(ηηξ )ξ

)

+ ε2(3η2ηξ + Λ4ηξξξξξ + Λ5ηξηξξ + Λ6ηηξξξ

) = 0, (1)

where the coefficients Λi depend on parameter values, and the
parameter R2 measures the excess of the Reynolds number over
the critical value. The ordinary differential equation for traveling
wave solutions η(x − ct) of (1) was considered in [7] where it
is shown to be the nonlinear differential equation of fourth order
that has exact periodic solutions expressed in terms of Weierstrass
functions. The fifth order evolution equation (1) is applicable to
problems which exhibit oscillatory long wave instabilities such as
surface waves on convecting fluids and others. This equation rep-
resents a consistent extension of the KdV–KS equation to include
fifth order dispersion.

The problem of flow of a film along an inclined plane has
been studied extensively after the first experiments of Kapitsa and
Kapitsa [8] due to its relevance in different physical phenomena
and interesting mathematical properties. Linear stability analysis is
described by the Orr–Sommerfeld equation which predicts that a
steady flow becomes unstable to long wave perturbations beyond
a critical angle of inclination The nonlinear evolution of these un-
stable long waves was first studied by Benney [9] by means of
asymptotic expansions making use of the fact the ratio of depth to
wavelength is a natural small parameter. This result was extended
to higher order by Lin [10] to obtain what is usually referred to
as Benney–Lin equation. The two equations differ not only in their
order of expansion but also in some scaling assumptions and give
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different predictions on the nature of the bifurcation from the
basic steady state [11]. We refer to review articles [12,13] for ad-
ditional references to the problem of flow along an inclined plane.
We will show the connection between the Benney–Lin equation
and the fifth order Eq. (1).

In Section 2 we formulate the problem. In Section 3 we perform
a long wave asymptotic expansion without any assumption on the
size of the parameters to obtain the fifth order evolution equation.
Here we also show the connection between the equation found
with the Benney–Lin equation. In Section 4 we study periodic so-
lutions in a small box and show that in a box where KdV–KS
solutions die away, the present model allows growth. The maximal
rate of growth is obtained by means of a variational principle from
which it will follow that finite time blowup does not occur. Finally
analytic solitary waves and front solutions are exhibited for special
parameter values. This equation also exhibits periodic solutions in
terms of Weierstrass functions which have been given elsewhere.

2. Mathematical formulation

Consider a thin layer of incompressible fluid of density ρ , vis-
cosity μ flowing down an inclined plane with an angle β . The
motion of the fluid is described by the Navier–Stokes equations

∇ · �u = 0, (2)

ρ
(�ut + (�u · ∇)�u) = −∇p + ρ�g + μ∇2�u. (3)

We choose coordinates such that �g = g(sinβ,0,− cos β) and we
consider two dimensional motion so that the velocity is given by
�u = (u,0, w).

The fluid is bounded below by a rigid surface on which

u = 0, w = 0, (4)

and the upper surface z = h(x, t) is free. The laminar flow solution
is given by

ps = pa − ρg cosβ(z − d), Us = g sinβ

ν

(
dz − 1

2
z2

)
, (5)

where d is the undisturbed depth and pa the atmospheric pres-
sure. On the free surface h(x, t) = d + η(x, t) the boundary condi-
tions are

ηt + uηx = w, (6)

p − pa − 2μ

N2

[
wz + uxη

2
x − ηx(uz + wx)

]
= −σ

nxx

(1 + ηx)3/2
, (7)(

1 − η2
x

)
(uz + wx) + 2ηx(wz − ux) = 0, (8)

where σ is the surface tension. Eqs. (2)–(8) constitute the problem
to be solved. Scaling length with depth d, velocities with the mean
stationary speed u0 = gd2 sin β/(3ν) and pressure with the mean
stationary pressure p0 = ρgd cos β/2 and time with t0 = d/u0, the
equations can be written in dimensionless form in terms of three
parameters, the angle β , the Reynolds number R and the Weber
number W defined as

R = gd3 sinβ

3ν2
, W = σ

ρgd2 cosβ
.

3. Long wave asymptotic expansion

We consider the case of long small amplitude waves for Weber
number of order unity. Following the usual procedure we intro-
duce the small parameter ε which measures the ratio of depth to
wavelength and introduce new variables
ξ = ε(x − ct), τ = ε3t,

u = Us + ε2û, w = ε3 ŵ, p = ps + ε2 p̂, η = ε2η̂.

With this scaling the equations and boundary conditions are
written as

ûξ + ŵz = 0, (9)

ε
(
(Us − c)ûξ + Usz ŵ

) + ε3(ûτ + ûûξ + ŵûz)

= 1

R

[
−3

2
ε cot β p̂ξ + ε2ûξξ + ûzz

]
, (10)

ε2(Us − c)ŵξ + ε4(ŵτ + û ŵξ + ŵ ŵz)

= 1

R

[
−3

2
cotβ p̂z + ε3 ŵξξ + ε ŵzz

]
. (11)

The boundary conditions become

û = ŵ = 0 on z = 0, (12)

and, on z = 1 + ε2η̂,(
3

2
− c

)
η̂ξ + ε2(η̂τ + ûη̂ξ ) − 3

2
ε4η̂2ηξ = ŵ, (13)

p̂ = 2η̂

+ 4ε tanβ

3(1 + ε6η̂2
ξ )

[
ŵz + ε6ûξ η̂

2
ξ − ε2η̂ξ

(−3η̂ + ûz + ε2 ŵξ

)]

− 2ε2W η̂ξξ

(1 + ε6η̂2
ξ )

3/2
, (14)

(
1 − ε6η̂2

ξ

)(−3η + ûz + +ε2 ŵξ

) + 2ε4(ŵz − ûξ ) = 0, (15)

where we have used that, in dimensionless variables, Us(1+ε2η̂) =
3
2 − 3

2 ε4η̂2, pz(1 + ε2η̂) = pa − 2ε2η̂ and Usz(1 + ε2η̂) = −3ε2η̂.
Next we proceed to solve perturbatively the system by expand-

ing all quantities in ε as f̂ = f0 + ε f1 + ε2 f2 + · · · where f̂ rep-
resents any of the independent variables û, ŵ , p̂, η̂. The Reynolds
number is expanded as R = R0 + ε2 R2 + · · · . Our aim is to con-
struct a fifth order evolution equation for the surface deformation.
At leading order the equations to be solved are

u0ξ + w0z = 0, u0zz = 0, p0z = 0

subject to w0(0) = u0(0) = 0 and(
3

2
− c

)
η0ξ = w0(1), p0(1) = 2η0, −3η0 + u0z = 0.

The solubility condition for this system determines the speed to
be c = 3. We omit giving the details of derivation at higher orders
which is lengthy but straightforward. We will only state the solu-
bility conditions at each order. At order ε the solubility condition
determines the critical Reynolds number

R0 = 5

6
cotβ.

At the following order the solubility condition determines that the
evolution equation for the leading order surface deformation is the
Korteweg–deVries equation

η0τ + 6η0η0ξ + Λ1η0ξξξ = 0,

where Λ1 = 3. At order ε3 the solubility condition yields

η1τ + 6(η0η1)ξ + Λ1η1ξξξ + 6

5
R2η0ξξ + Λ2η0ξξξξ

+ Λ3(η0η0ξ )ξ = 0,
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where

Λ2 = W cotβ + f1(β), f1(β) = 7743

2240
cotβ − 1

36036
cot3 β,

and Λ3 = 3 cot β .
The procedure can be halted at this stage and a generalized

Kuramoto Sivashinsky equation constructed for η = η0 + εη1. Our
aim is to determine a higher order correction which will provide a
more accurate description of the linear theory and determine the
nonlinearities that accompany a linear fifth order derivative term
consistently. Proceeding to the next order the solubility condition
yields

η2τ + 6(η0η2)ξ + 6η1η1ξ + Λ1η2ξξξ + R2Λ
′
1η0ξξξ + 6

5
R2η1ξξ

+ Λ2η1ξξξξ + Λ3(η0η1)ξξ + 3η2
0η0ξ + Λ4η0ξξξξξ

+ Λ5η0ξ η0ξξ + Λ6η0η0ξξξ = 0,

where

Λ4 = 25

21
W + f2(β),

f2(β) = 11

2
+ 2198765

532224
cot2 β − 1385

38594556
cot4 β,

Λ′
1 = 10

7
cot β, Λ5 = 26 + 449

42
cot2 β,

Λ6 = 12 + 25

7
cot2 β.

Finally a single evolution equation for the surface displacement
η = η0 + εη1 + ε2η2, obtained combining the solubility conditions,
is given by

ητ + 6ηηξ + (
Λ1 + ε2 R2Λ

′
1

)
ηξξξ

+ ε

(
6

5
R2ηξξ + Λ2ηξξξξ + Λ3(ηηξ )ξ

)
+ ε2(3η2ηξ + Λ4ηξξξξξ + Λ5ηξηξξ + Λ6ηηξξξ

) = 0. (16)

This fifth order equation constitutes the evolution equation we
searched for. The inclusion of fifth order dispersion has been ob-
tained by a systematic perturbation method which shows that
together with the high order dispersive term additional quadratic
and cubic nonlinearities have to be considered. Several fifth order
water wave models have been studied, most of them correspond
to particular cases of (16) without instability and dissipation, that
is without the terms that appear at order ε . Particular cases of the
equation ut + 6uux + β1uxxx + ε2(β2u2ux + +β3uxxxxx + β4uxuxx +
β5uuxxx) = 0 are well studied fifth order model equations. We refer
to the recent work [3,4].

A natural question which arises is the relation of this equation
to the classical large amplitude equations derived by Benney and
Lin. Benney’s equation includes derivatives up to the fourth order,
and therefore the present equation cannot be derived from it. We
may consider however Lin’s equation

ht + A(h)hx + α
∂

∂x

[
B(h)hx + C(h)hxxx

]
+ α2 ∂

∂x

[
D(h)h2

x + E(h)hxx + F (h)hxxxx + G(h)hxhxxx

+ H(h)h2
xx + I(h)h2

xhxx
]

+ O
(
α3) = 0 (17)

where the coefficients are those given in [10] and α is the small
wavenumber. In the derivation of this equation it is assumed that
the Weber number W is large so that α2W is of order one. The
Fig. 1. K as function of the Weber number for ε = 0.1, β = π/16 with and without
the angle factors f i .

coefficients C(h), F (h), G(h), H(h), I(h) are proportional to α2W .
In the present calculation the Weber number is of order one, and
these terms become of order α3 and α4, orders which were ne-
glected in Lin’s equation. As we show below, we may obtain (16)
from (17) but with modified linear terms which arise from the
higher order terms not included in (17).

Let h = 1 + ε2s(x, t), α = ε , R = 5 cot β/4 + ε2 R̃2, and search
for solutions s(x, t) = η̃(z, ε2τ̃ ) with z = x − A(1)t . We then ex-
pand keeping terms up to order ε4 and taking into account that
the Weber number is of order one. In this process we see that lin-
ear terms of order α3 and α4 should be included. Since they are
neglected in (17), we expect to find a difference in the linear coef-
ficients. It is found that

η̃τ̃ + A′(1)η̃η̃z + E(1)η̃zzz

+ ε

[
8

15
R2η̃zz + 2

3
W η̃zzzz + B ′(1)(η̃η̃z)z

]

+ ε2
[

1

2
η̃zη̃

2 A′′(1) + (η̃η̃zz)z E ′(1) + 40

63
Rc W η̃zzzzz

+ (
η̃2

z

)
z D(1)

]
= 0. (18)

In obtaining this expression we used the fact that B(1) =
8(R − Rc)/15 = 8ε2 R2/15, C(1) = 2ε2W /3 and F (1) =
40ε2 Rc W /63. One verifies that, after introducing the scalings
τ = 2τ̃ /3, R2 = 2R̃2/3, W = W̃ tan β in (16) to account for the
different choice of dimensionless variables, the two Eqs. (16) and
(18) coincide except in the linear terms. Eq. (18) does not con-
tain the functions f1(β), f2(β) which appear in the coefficients
accompanying the linear terms involving fourth and fifth order
derivatives. The reason for the discrepancy is as explained above.
The additional angle dependent coefficients f1(β), f2(β) become
important when analyzing the bifurcation from the basic state for
small Weber number. In effect, the nature of the bifurcation from
the steady state η = 0 changes from subcritical to supercritical
when these factors are included. Letting η = δ(η̃0 + δη1 + · · ·) and
expanding in the small parameter δ and solving to the third or-
der, we find that the modulus of the amplitude for the bifurcating
branch is given by

d|A|
dt

= |A| − K |A|3

where the coefficient K is positive for all values of the Weber
number when f1(β), f2(β) are included. In Fig. 1 the solid line de-
picts the bifurcation coefficient K including f1 and f2, the dashed
line without including them. As can be seen from the graph, at low
values of the Weber number the nature of the bifurcation changes
from subcritical to supercritical when the angle dependent func-
tions f i are included.
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4. Finite amplitude instability in a small box

The evolution equation (16) contains nonlinearities which are
not present in the KS–KdV equation, in particular the quadratic
term (η2)xx is known to be destabilizing. We will show that in
a sufficiently small box, where KdV–KS solutions die away, the
higher order equation derived has finite amplitude instability, and
the rate of growth of the instability will be determined. In partic-
ular we show that solutions cannot blow up in finite time.

Let us rewrite the equation as

ηt + λ2ηxx + λ3ηxxx + λ4ηxxxx + λ5ηxxxxx + β1
(
η2)

x

+ β2
(
η2)

xx + β3
(
η3)

x + β4
(
η2

x

)
x + β5(ηηxx)x = 0 (19)

and consider periodic solutions in a box of size L. One can show
that

dI

dt
= λ2

L∫
0

η2
x dx − λ4

L∫
0

η2
xx dx + β2

L∫
0

ηη2
x dx + ω

L∫
0

η3
x dx, (20)

where ω = β4 − β5/2 and

I(t) = 1

2

L∫
0

η2(x, t)dx. (21)

For the KdV–KS equation only the first two terms on the right
side are present and it follows that all solutions die away for [14]
L � 2π

√
λ4/λ2. In what follows we will show that

lim
t→+∞ I(t)e−2γ β2t = 0, for 0 < L < 2π

√
λ4

λ2
(22)

for any arbitrary γ > 0. In effect, since

ηη2
x � γ

2
η2 + 1

2γ
η4

x

for any γ > 0, it follows from Eq. (20) that

e2γ β2t d

dt

(
Ie−2γ β2t) � λ2

L∫
0

η2
x dx − λ4

L∫
0

η2
xx dx

+ β2

γ

L∫
0

η4
x dx + ω

L∫
0

η3
x dx. (23)

We will prove that the right side is negative for L < 2π
√

λ4/λ2
using an auxiliary variational principle.

Define the functional J [v] as

J [v] =
L∫

0

(
λ4 v2

x − λ2 v2 − β2

γ
v4 − ωv3

)
dx (24)

and search for an extremum among solutions of zero average,

L∫
0

v dx = 0.

J [v] has an extremum for v = v̂ which satisfies the Euler–Lagrange
equation

2λ4 v̂xx + 2λ2 v̂ + 4
β2

v3 + 3ω v̂2 − μ = 0, (25)

γ

where μ is a Lagrange multiplier to be determined by enforcing
the constraint. The extremum is given then by

J [v̂] =
L∫

0

(
β2

γ
v̂4 + ω

2
v̂3

)
dx.

Notice that the Euler–Lagrange is the equation of motion of a parti-
cle of mass 2λ4 moving in the potential V (v) = λ2 v2 + (β2/γ )v4 +
ωv3 − μv . The problem can be solved numerically without diffi-
culty, we find J [v̂] � 0. The period L is a decreasing function of en-
ergy and J [v̂] increases with energy. The minimum of J is attained
when the energy tends to zero at which value L → 2π

√
λ2/λ4, and

Jmin → 0. In summary,

J [v̂] � 0 for 0 � L � 2π

√
λ2

λ4
.

The original inequality (23) can be written as

e2γ β2t d

dt

(
Ie−2γ β2t) � − J [ηx] � 0 for 0 � L � 2π

√
λ2

λ4
(26)

which implies (22), therefore, in a small box solutions do not blow
up in finite time.

5. Analytic solutions

In this section we will study the evolution equation and con-
struct analytic traveling wave solutions for special values of the pa-
rameters. To our knowledge there is only one work where (16) has
been considered. In [7] a search was made for nonlinear ordinary
differential equations with exact solutions that can be expressed
in terms of elliptic Weierstrass equations. There it is found that
the most general fourth order ODE with second degree singulari-
ties that has this property is the equation that describes traveling
wave solutions of (16).

We search for the traveling wave solutions η(ξ, τ ) = η(z) with
z = ξ − C0τ so that (19) becomes an ordinary differential equation
which can be integrated once to yield

−C0η + λ2η
′ + λ3η

′′ + λ4η
′′′ + λ5η

′′′′ + β1η
2 + 2β2ηη′

+ β3η
3 + β4

(
η′)2 + β5ηη′′ = −C1 (27)

where C1 is an integration constant and primes denote derivatives
with respect to z. Following [15] we search for solutions express-
ible in terms of solutions

Y (z) = a

2
+ 1

2

√
a2 + 4b tanh

(
1

2

√
a2 + 4bz + C2

)

of Ricatti’s equation Y z = −Y 2 + aY + b. Introducing the Ansatz

η(z) = A0 + A1Y (z) + A2Y 2(z) (28)

in (27) one finds an algebraic system of equations

6∑
j=1

W j Y
j = 0.

The solution of each W j = 0 determines relations among the pa-
rameters.

It is useful to notice that (28) can be rewritten as

η = p0 + p1 tanh(K z) + p2 sech2(K z),

where
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Fig. 2. Graph of the three analytic solutions found for different parameter values.

p0 = A0 + 1

2
aA1 +

(
1

2
a2 + b

)
A2,

p1 = K (A1 + aA2),

p2 = −K 2 A2,

where K = (1/2)
√

a2 + 4b.
We will choose parameters that lead to simple analytic solu-

tions. Choose β1 = 3, λ4 = λ5 = β5 = 1, β3 = 3/40, β4 = 0. For this
choice the system of equations W j = 0 has simple solutions.

For example, for λ2 = −5, λ3 = 85/3, β2 = 3/20 an exact solu-
tion is the solitary wave

η(z) = 50 sech2
(√

5

2
z

)
,

depicted with a solid line in Fig. 2.
Choosing λ2 = 11543/128, λ3 = 139/64, β2 = 1/2, an exact so-

lution is the kink

η(z) = 245

32
sech2

(
7z

16

)
+ 245

16
tanh

(
7z

16

)
,

solution depicted with a dashed line in Fig. 2.
Finally, for λ2 = 155/2, λ3 = 169/16, β2 = 1/2 we find the soli-

tary wave depicted with the dot-dashed line,

η(z) = 175

2
tanh

(
5z

2

)
+ 250 sech2

(
5z

2

)
− 64.

Analytic solutions exist for different parameter values including
physical values for flow along the inclined plane. It is also pos-
sible to verify that a sech2 solution does not exist for arbitrary
values of the parameters. We do not pursue any further the con-
struction of analytic solutions, several methods exist to construct
exact solutions, the examples show that solitary waves and fronts
are among the solutions of this equation, as well as the periodic
solutions found in previous work [7].
6. Summary

The purpose of this work was to construct a fifth order descrip-
tion of small amplitude dissipative solitons. A consistent asymp-
totic approach in the model problem chosen leads to a fifth order
evolution equation which, in addition to the convective nonlinear-
ity present in the KdV–KS equation, includes other nonlinearities
present in fifth order water wave models. We show that the form
of the equation can be obtained as a small amplitude limit of
Lin’s equation, but that higher order linear corrections must be
included for small Weber numbers. The evolution equation found
here is applicable not only to the present problem, it will be valid
for other problems with long wave oscillatory instability in dis-
sipative systems such as surface waves in convecting fluids [16],
waves in plasmas and others. For the purpose of illustration sin-
gle humped homoclinic ant heteroclinic solutions are constructed
for special parameter values. In previous work [7] analytic peri-
odic solutions were found, in that work however the equation
was not derived from a physical problem but constructed as a
model ordinary differential equation with exact analytic solutions
in terms of Weierstrass functions. Periodic solutions in a box of
length smaller than the critical length at which linear instability of
the basic state η = 0 occurs may grow, but always slower than ex-
ponentially. Stability of large period solutions will be the subject
of future work.
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