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The propagation of a domain wall (DW) in a thin ferro-
magnetic nanotube when an external field is applied along
the axis of the cylinder is studied in the recent letter [1]. It
is shown in [1] that the time evolution of the magnetization
distribution is governed by a modified Landau-Lifshitz-
Gilbert equation which, in the limit of strong penalization,
reduces to a reaction diffusion equation. The exact for-
mula for the speed of the DW is obtained and its nonlinear
dependence on the nanotube radius analyzed.

In this Comment we complement the results of [1] show-
ing that above a critical external applied magnetic field
Hcrit

a (R) there is a transition to a different regime and the
speed is no longer given by the formula derived in [1]. The
front becomes of Kolmogorov-Petrovskii-Piscounov type
(KPP) and the speed is given by a different expression,
which we give below. In this regime the speed of the DW
has a different dependence on the nanotube radius and
on the applied field which yields lower values than those
predicted in [1]. In a similar way, there is a critical radius
Rcrit(Ha) above which the KPP regime holds. The func-
tional dependence of the speed on the external field and
on the nanotube radius exhibits a sudden change in slope
which is reminiscent of that reported in [2].

The dynamics of the magnetization found in [1] in the
case of strong penalization (weak anisotropy) is given by
the reaction diffusion equation, eq. (12) in [1],

∂θ

∂τ
=

(
α

γ
+

γ

α

)
(Δ2

Sθ− (1+κ) sin θ cos θ−Ha sin θ). (1)

Here θ denotes the angle of the magnetization vector with
the longitudinal axis x̂, that is, �m = cos θêx + sin θêψ

and êψ is the unit axis tangential to the surface of the
cylinder. The dimensionless parameters κ and Ha are de-
fined in terms of the physical constants as κ = KR2/A
and Ha = μ0MSR2Ha/(2A), where R is the nanotube

radius, A is the exchange constant, K the easy-axis uni-
axial anisotropy constant, μ0 is the magnetic permeability
of vacuum, Ha is the applied field and Ms is the satura-
tion magnetization. The constant γ is the electron gy-
romagnetic ratio and α is a phenomenological damping
parameter. The dimensionless time variable is defined by
τ = [2γA/(μ0MsR

2)]t. The subscript S denotes surface
derivatives [1].

This equation has an exact solution, a monotonic de-
caying front θ(ξ + cP τ) joining the unstable equilibrium
θ = π to the stable equilibrium θ = 0 propagating with
speed

cP =
(

α

γ
+

γ

α

)
Ha√
1 + κ

. (2)

In terms of the physical parameters it is given by (eq. (19)
in [1]),

cNL =
(

α

γ
+

γ

α

)
γRHa√

1 + KR2/A
. (3)

We may scale the time variable τ in (1) to absorb the
factor α/γ +γ/α and consider the reaction diffusion equa-
tion

θ̇ = Δ2
Sθ − (1 + κ) sin θ cos θ −Ha sin θ.

The reaction term −(1 + κ) sin θ cos θ −Ha sin θ may give
rise to monostable or bistable equilibria. In the monos-
table case, in which θ = 0 is the stable equilibrium and
θ = π is the unstable equilibrium, the speed of the front
may be of KPP (or pulled) type [3] or it may be of pushed
type [4], depending on the value of the parameters. The
solution given in [1] corresponds to the exact solution in
the case of the pushed front which also holds in the bistable
regime. As we show below there is a regime in which the
front becomes of KPP type. In this regime the speed shows
a different functional dependence on the applied field and
nanotube radius.

37008-p1



Comment

Fig. 1: The solid line represents the speed of the front as a
function of applied field. At low field the front is pushed, at
higher values of the field the front becomes of KPP type. The
dashed line shows the speed of the pushed front which is not
the selected speed beyond the critical value of the field Hcrit

a .

Fig. 2: Speed of the front as a function of nanotube radius. At
lower radii the front is pushed, at higher values of the radius the
front becomes of KPP-type regime in which the speed increases
with the radius but at a lower rate than in the pushed regime.

In order to apply directly the theory of reaction diffu-
sion equations [5,6] it is convenient to make the change of
variables θ = π(1 − u) to obtain the equation

u̇ = Δ2
Su + f(u)

with

f(u) =
sin(πu)

π
(Ha − (1 + κ) cos(πu)).

In the monostable case, u = 1 is the stable equilibrium
and u = 0 is the unstable equilibrium. In the bistable
case both are stable, and the intermediate point becomes
unstable; here we shall only consider the transition to the
KPP regime in the monostable case. A small perturbation
to the unstable state evolves into the front of minimal
speed c∗ which satisfies [3]

2
√

f ′(0) ≤ c∗ ≤ 2 sup
√

f(u)/u.

The KPP value for the speed is given by

cKPP = 2
√

f ′(0) = 2
√

Ha − (1 + κ).

In terms of the original physical quantities, the speed is

cKPP =
4γA

μ0MsR

(
α

γ
+

γ

α

)√
μ0MsR2

2A
Ha−

(
1 +

KR2

A

)
,

which has a different functional dependence on the radius
and applied field than the speed in the pushed regime,
eq. (3).

The front will be with certainty of KPP type when f is
concave, that is when Ha ≥ 4(1 + κ); however the KPP
regime may hold for lower values of the applied field [4]. In
this problem, for which the solution in the pushed regime
is known, we know that the transition occurs at the point
where cNL = cKPP . It is straightforward to verify that
for fixed radius the KPP regime holds when

Ha ≥ Hcrit
a (R) =

4A

μ0MsR2

(
1 +

KR2

A

)
.

For a given applied magnetic field Ha, the KPP regime
holds when

R ≥ Rcrit(Ha) =

√
4A

μ0MsHa − 4K
.

In fig. 1 we show the dependence of the speed on the ap-
plied magnetic field for fixed radius. In fig. 2 we show
the speed as a function of the nanotube radius for a fixed
applied field, large enough so that the KPP regime exists.
At the transition value Hcrit

a in fig. 1 or Rcrit in fig. 2, the
rate of increase of the speed shows a marked decrease.

Similar results hold in the weak penalization regime.
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