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Reaction diffusion dynamics and the Schryer-Walker solution for domain walls
of the Landau-Lifshitz-Gilbert equation
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We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The
reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization
vector. If the hard-axis anisotropy Kd is much larger than the easy-axis anisotropy Ku, there is a range of applied
fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the
speed of the domain wall in this regime and the conditions for its existence.
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I. INTRODUCTION

Magnetic domain wall propagation is an active area of
research both as an interesting physical phenomenon and for
its possible applications in logic devices, magnetic memory
elements, and others [1]. In micromagnetic theory the motion
of a domain wall is described by the Landau-Lifshitz-Gilbert
(LLG) equation [2,3], which cannot be solved analytically
except in a few special cases. For an infinite medium with
uniaxial anisotropy and an external field applied along the
symmetry axis, the Schryer-Walker (SW) solution [4,5] is
the best-known analytical expression for a stationary traveling
domain wall. This exact solution successfully predicts many
experimental results below a cutoff field. The stability of the
SW solution with respect to small perturbations has been
studied recently [6] using dynamical systems techniques.
The analysis of the spectrum of a perturbation to the SW
solution shows that it may become absolutely or convectively
unstable before the breakdown field. This instability is found
numerically for sufficiently large hard-axis anisotropy and for
fields larger than a critical value. While this instability is in
qualitative agreement with results of the numerical integrations
reported in [7], it has not been confirmed experimentally. The
range of physical parameters of ferromagnetic materials where
domain walls are observed is wide, and as discussed in [6], it
has not been fully explored. Temperature, doping, and fabri-
cation techniques allow tailoring of the material parameters,
which may vary over several orders of magnitude [8–10], and
such instability may become experimentally accesible in the
future [7].

In this work we study the dynamics of the equation derived
by Schryer and Walker from the LLG problem. Most work
on this equation has focused on the existence of an exact
traveling domain wall. Here we take a different approach:
the SW equation is a nonlinear partial differential equation
and the existence of an exact solution does not imply that an
initial condition will converge to this exact solution. Using
the theory of reaction diffusion equations we find that the
SW solution is not selected by the dynamics for applied
fields larger than a critical value provided that the hard-axis
anisotropy is sufficiently large. We give explicit analytic
expressions for the transition field, the speed of the front
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beyond this transition, and the conditions under which this
transition occurs. Qualitatively these results agree with the
findings reported in [6]; in this case, due to the simplicity of
the problem, a full analytical solution is given. We conjecture
that this behavior is preserved in the full LLG equation. An
asymptotic analysis of the slow-time evolution of the LLG
equation for large perpendicular anisotropy and small fields
leads to a similar transition [11].

II. SCHRYER-WALKER SOLUTION

For the sake of clarity we first recall the SW solution in
some detail. The starting point of the calculation is the LLG
equation for the magnetization. The material has magneti-
zation �M = Ms �m, where Ms is the saturation magnetization
and �m = (m1,m2,m3) is a unit vector along the direction of
magnetization. The dynamic evolution of the magnetization is
governed by the LLG equation,

d �M
dt

= −γ0 �M × �Heff + α
�M

Ms

× d �M
dt

, (1)

where �Heff is the effective magnetic field, γ0 = |γ |μ0, γ

is the gyromagnetic ratio of the electron, and μ0 is the
magnetic permeability of vacuum. The constant α > 0 is the
dimensionless phenomenological Gilbert damping parameter.
Following SW, we consider an infinite medium with uniaxial
crystalline anisotropy. The easy axis is taken to be the z axis
of a Cartesian coordinate system and an external magnetic
field is applied along this easy axis. The demagnetizing field
is assumed to have a local representation and to depend only
on x. The effective magnetic field is then given by

�Heff = Haẑ + Cex

μ0M2
s

∂2 �M
∂x2

+ 2Ku

μ0M2
s

Mzẑ − 2Kd

μ0M2
s

Mxx̂, (2)

where Cex is the exchange constant, Ku the easy-axis uniaxial
anisotropy, and Kd the perpendicular anisotropy.

Introducing Ms as the unit of the magnetic field and
introducing the dimensionless space and time variables ξ =
x
√

Ku/Cex and τ = μ0|γ |Mst , we rewrite Eqs. (1) and (2) in
dimensionless form,

d �m
dτ

= − �m × �heff + α �m × d �m
dτ

, (3)
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with

�heff = haẑ + 1

2
ku

∂2 �m
∂ξ 2

+ kum3ẑ − kdm1x̂, (4)

where ha is the dimensionless applied field and the dimen-
sionless numbers that have appeared are ku = 2Ku/(μ0M

2
s )

and kd = 2Kd/(μ0M
2
s ). Equations (3) and (4) describe the

dynamics of the problem. Next we introduce spherical coordi-
nates for the unit magnetization vector, namely,

m1 = sin θ cos ϕ, m2 = sin θ sin ϕ, and m3 = cos θ.

(5)

The LLG equation then reduces to the coupled system

α sin θ ϕ̇ + θ̇ = 1

2
kd sin θ sin 2ϕ + 1

2

ku

sin θ

∂

∂ξ
(ϕξ sin2 θ ),

(6a)

αθ̇ − sin θ ϕ̇ = 1

2
kuθξξ − ha sin θ − 1

4
kuϕ

2
ξ sin 2θ

− ku sin θ cos θ − kd sin θ cos θ cos2 ϕ. (6b)

The solution studied by Schryer and Walker is that with
constant azimuthal angle ϕ = ϕ0. With this assumption the
equations above reduce to

θ̇ = 1
2kd sin θ sin 2ϕ0, (7a)

αθ̇ = 1
2kuθξξ − F (θ ), (7b)

where

F (θ ) = sin θ [ha + cos θ (ku + kd cos2 ϕ0)]. (8)

The time evolution for the polar angle θ is governed
by a reaction diffusion equation, for which a complete
rigorous mathematical theory is well established. We are
interested in the reversal of the magnetization induced by
the applied magnetic field; therefore, as in [4,5], we assume
that θξ vanishes as ξ → ±∞ and that θ → 0 when ξ → −∞
and θ → π when ξ → ∞. Equations (7) together with the
asymptotic conditions are the system studied by Schryer and
Walker. For the sake of completeness we recall some of their
results. The first step is to note that the angle ϕ0 is fixed through
a consistency condition. In effect, multiplying (7a) by αθx and
integrating in x between −∞ and +∞, using (7b) and the
boundary conditions, one obtains [4]

sin 2ϕ0 = −2ha

αkd

≡ − ha

hw

, (9)

where the dimensionless Walker field is given by hw = αkd/2
in the present notation. It is convenient to express cos2 ϕ0

in terms of the applied magnetic field. Two branches exist,
cos2 ϕ0 = (1/2)(1 ±

√
1 − sin2 2ϕ0). When the applied field

vanishes the domain wall is static and ϕ0 = ±π/2. Therefore
we choose, following [5], the branch

cos2 ϕ0 = 1
2 (1 −

√
1 − sin2 2ϕ0) = 1

2 (1 −
√

1 − (ha/hw)2).

III. REACTION-DIFFUSION DYNAMICS

Next we consider the dynamics of Eq. (7b). In order to apply
the theory of reaction diffusion equations, it is convenient to

render it in the usual form. To do so we introduce a new
dependent variable u defined by θ = π (1 − u). The evolution
equation for this new variable is

αu̇ = Duξξ + f (u), (10)

with

f (u) = sin πu

π
[ha − (ku + kd cos2 ϕ0) cos πu)], D = 1

2ku.

The explicit dependence of the reaction term on the applied
field is then

f (u) = sin πu

π
(ha − R(ha) cos πu),

where R(ha) = ku + kd

2
(1 −

√
1 − (ha/hw)2). (11)

Equation (10) is the well-studied reaction diffusion equation.
The diffusion constant D = ku/2 and the reaction term f ,
which satisfies f (0) = f (1) = 0, is monostable or bistable,
depending on the values of the material parameters and the
applied field. In the bistable case, there is a unique domain
wall. This is the exact SW solution,

u = 2

π
arctan

[
e−

√
2R(ha )

ku
(ξ−cSWτ )]

,

cSW = ha

α

√
ku

2ku + kd (1 −
√

1 − (ha/hw)2)
. (12)

When the reaction term is monostable [f ′(0) > 0] there is a
continuum of fronts. A small perturbation to the unstable state
u = 0 (θ = π ) evolves into a traveling monotonic front of
minimal speed c∗ [12,13] that joins the stable state u = 1 (θ =
0) to the unstable state u = 0 (θ = π ).

The minimal speed can be obtained from variational
principles [14,15] and is bounded by [13]

cKPP ≡ 2

α

√
Df ′(0) � c∗ � 2

α

√
D sup f (u)/u. (13)

When the asymptotic speed is exactly cKPP the traveling
front is called a KPP (Kolmogorov-Petrovskii-Piskunov) or
pulled front. In their original paper [12] KPP proved that
localized initial conditions evolve into the linearly determined
speed cKPP provided that f (u) > 0, f ′(0) > f ′(u) for u ∈
(0,1). Less restrictive conditions and characterizations of the
asymptotic speed were established in subsequent work by other
authors (see [16] for a review and additional references). In
the monostable case one must determine whether the front of
minimal speed is the SW solution, Eq. (12), or a KPP front,
of speed

cKPP = 2

α

√
ku

2
(ha − R(ha)).

The analysis that follows gives the exact criterion under
which the speed of the domain wall will be given by the KPP
value. We show below that for an applied field H− < H < H+,
where

H± = 2αKd

μ0Ms

[α(1 + 2κ) ±
√

α2 − 16κ(κ + 1) ]

4 + α2

and κ = Ku/Kd, (14)
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the front of minimal speed, which will be selected by the
dynamics, is a KPP front. This regime exists provided that
α >

√
16κ(κ + 1). Otherwise, the speed is given by the

Schryer-Walker solution.
One can verify that the reaction term is monostable

f ′(0) > 0 for

α(1 + 2κ) −
√

α2 − 4κ(κ + 1)

1 + α2

� ha

hw

� α(1 + 2κ) +
√

α2 − 4κ(κ + 1)

1 + α2
.

This region exists only if κ � (
√

1 + α2 − 1)/2. In this region
the speed may be given by the SW or by the KPP value. We
know with certainty that the speed will be given by the KPP
value when the upper and lower bounds in (13) coincide. The
simplest condition to ensure this regime is to require f ′′(u) <

0. This condition is met provided ha > 4R(ha). One can show
that f ′′(u) < 0 for an applied field in the range

4(α(1 + 2κ) −
√

α2 − 64κ(κ + 1))
16 + α2

� ha

hw

� 4(α(1 + 2κ) +
√

α2 − 64κ(κ + 1))
16 + α2

.

If this condition is fulfilled, the time evolution of a pertubation
to the unstable state u = 0 (θ = π ) evolves into a monotonic
traveling front of speed cKPP. This criterion is sufficient but not
necessary; the transition from a pushed to a pulled front may
occur before the upper and lower bounds in Eq. (13) coincide.
In this problem, for which there is an exact solution, we know
that the transition will occur when cSW = cKPP. This implies
that the speed of the moving front will be, in the original
dimensional variables,

v =
⎧⎨
⎩

vSW if 0 < H < H−,

vKPP if H− < H < H+,

v SW if H+ < H < HW,

(15)

FIG. 1. Range of applied field (in units of the Walker field) versus
α showing the region for which the KPP regime exists for κ = 0.002.
For low values of α this regime is not present and the Schryer-Walker
profile is the selected solution. As κ decreases the KPP regime extends
to lower values of α.

FIG. 2. The solid line is the speed of the domain wall as a function
of μ0H for different values of α. The dashed line is the Schryer-
Walker (SW) speed in the region where the speed is the KPP value.
The difference between the SW speed and the KPP speed increases
with α.

where the Walker field is HW = 2αKd/(μ0Ms), the limiting
fields H± are those given in (14), and

vSW = Ha

α

μ0|γ |√Cex√
2Ku + Kd (1 −

√
1 − (H/HW )2)

, (16)

vKPP = 2|γ |√Cex

αMs

×
√

μ0MsHa − 2Ku − Kd (1 −
√

1 − (H/HW )2).

(17)

This transition for the speed occurs only if α2 > 16κ(κ + 1)
or, equivalently, if

Kd >
4Ku√

4 + α2 − 2
. (18)

There is an explicit analytic solution for the domain wall profile
in the Schryer-Walker regime, a closed-form analytic solution
for the KPP front does not exist in this problem. Since the
KPP regime is approached asymptotically and an analytic
expression for the magnetization does not exist, one cannot
calculate its speed from the identity derived in [17]. We know

FIG. 3. Reaction term f (u) for fixed α at two values of the applied
field. The dashed line shows the reaction term for an applied field for
which the SW speed is selected; the solid line corresponds to a field
for which the KPP speed is selected as shown in Fig. 2.
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FIG. 4. As Fig. 3, for α = 0.4. Reaction term f (u) for α = 0.4
at two values of the field. The dashed line depicts the reaction term
for an applied field for which the SW solution is selected; the solid
line corresponds to a field for which the KPP speed is selected. In the
bistable case (B = 0.08) the SW domain wall solution is the unique
front.

that it shares the qualitative features of the Walker solution,
that is, it is a monotonically decaying front joining the stable
and unstable equilibrium points. In Fig. 1 the shaded region
shows, for fixed κ , the range of applied field as a function of
α where the KPP regime exists. The field is expressed in units
of the Walker field.

The main effect of the KPP regime is to slow the rate of
increase in the speed with the applied field. In the figures
below we show the speed and reaction functions f (u) for
different parameter values. We fix the material parameters
Ms = 36 000 A/m and Cex = 10−13J/m. The speed as a
function of the magnetic induction B = μ0H for two values
of α, with material parameters Ku = 40 J m−3 and Kd =
7500 J m−3, is shown in Fig. 2. While many samples have
very low values of α, a large damping constant is needed
for spintronics applications. Doping ferromagnetic materials
with rare earth impurities has yielded values of the damping
parameter up to α = 0.8 [18–20]. The fabrication of magnetic
alloys with large perpendicular anisotropy and large damping
is the subject of ongoing work [21].

The solid line is the speed given in Eq. (15) and the dashed
lines are the values of the SW speed in the region where the
KPP regime holds. For larger values of α the rate of increase
in the speed with the field is significantly slower than for the
SW speed.

The different speed regimes obey the change in the
reaction term as the parameters are varied. In Fig. 3 we
show the reaction term for α = 0.8, Ku = 40 J m−3, and
Kd = 7500 J m−3, for different values of the field. When the
applied field B = μ0H = 0.05 the reaction term is of the KPP
type. In both cases the equilibrium u = 0 (θ = π ) is unstable.

For smaller α with the same values of Ku and Kd the nature
of the reaction terms changes drastically with the field (Fig. 4).

FIG. 5. As in Fig. 2, for different values of the hard-axis
anisotropy.

For B = 0.08 the reaction term is bistable, the states θ = 0 and
θ = π are stable, and the KPP regime does not exist. There
is a single traveling front, the SW solution. For a small field
the reaction term is of the KPP type. Not only does the speed
change, but also the stability of the equilibrium θ = π changes
with the field.

In Fig. 5 we show the speed as a function of the field for
different values of the hard-axis anisotropy. Here the presence
of the KPP regime has a larger effect for larger values of Kd .

IV. CONCLUSION

The existence of different regimes of front propagation in
the reduced system studied by Schryer and Walker that we
report here follows directly from the general theory of reaction
diffusion equations. It is natural to ask whether this regime
arises in the full LLG equations. There is analytical evidence
that it does in the case of very thin nanotubes as demonstrated
in [22] and [23]. For nanowires and thin films an asymptotic
expansion of the LLG equation for a large perpendicular
anisotropy [11] shows the transition from the SW to the KPP
solution at a small field, a transition which we identify with the
transition point H−. In these works the assumption of a fixed
azimuthal angle is not imposed. While, to our knowledge, the
parameter ranges for which this transition occurs have not
been accessed experimentally, they may become accessible in
the future.
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S. M. Zhou, Phys. Rev. Lett. 110, 077203 (2013).
[22] A. Goussev, J. M. Robbins, and V. Slastikov, Europhys. Lett.

105, 67006 (2014).
[23] M. C. Depassier, Europhys. Lett. 108, 37008 (2014).

144416-5

http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.111.027205
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevLett.109.167209
http://dx.doi.org/10.1103/PhysRevB.85.064419
http://dx.doi.org/10.1103/PhysRevB.85.064419
http://dx.doi.org/10.1103/PhysRevB.85.064419
http://dx.doi.org/10.1103/PhysRevB.85.064419
http://dx.doi.org/10.1063/1.4862091
http://dx.doi.org/10.1063/1.4862091
http://dx.doi.org/10.1063/1.4862091
http://dx.doi.org/10.1063/1.4862091
http://dx.doi.org/10.1063/1.4919267
http://dx.doi.org/10.1063/1.4919267
http://dx.doi.org/10.1063/1.4919267
http://dx.doi.org/10.1063/1.4919267
http://dx.doi.org/10.1209/0295-5075/111/27005
http://dx.doi.org/10.1209/0295-5075/111/27005
http://dx.doi.org/10.1209/0295-5075/111/27005
http://dx.doi.org/10.1209/0295-5075/111/27005
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1007/BF00277154
http://dx.doi.org/10.1007/BF00277154
http://dx.doi.org/10.1007/BF00277154
http://dx.doi.org/10.1007/BF00277154
http://dx.doi.org/10.1103/PhysRevLett.77.1171
http://dx.doi.org/10.1103/PhysRevLett.77.1171
http://dx.doi.org/10.1103/PhysRevLett.77.1171
http://dx.doi.org/10.1103/PhysRevLett.77.1171
http://dx.doi.org/10.1016/j.physrep.2003.08.001
http://dx.doi.org/10.1016/j.physrep.2003.08.001
http://dx.doi.org/10.1016/j.physrep.2003.08.001
http://dx.doi.org/10.1016/j.physrep.2003.08.001
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1103/PhysRevLett.102.117201
http://dx.doi.org/10.1103/PhysRevLett.102.117201
http://dx.doi.org/10.1103/PhysRevLett.102.117201
http://dx.doi.org/10.1103/PhysRevLett.102.117201
http://dx.doi.org/10.1103/PhysRevLett.97.117601
http://dx.doi.org/10.1103/PhysRevLett.97.117601
http://dx.doi.org/10.1103/PhysRevLett.97.117601
http://dx.doi.org/10.1103/PhysRevLett.97.117601
http://dx.doi.org/10.1109/20.950957
http://dx.doi.org/10.1109/20.950957
http://dx.doi.org/10.1109/20.950957
http://dx.doi.org/10.1109/20.950957
http://dx.doi.org/10.1103/PhysRevLett.110.077203
http://dx.doi.org/10.1103/PhysRevLett.110.077203
http://dx.doi.org/10.1103/PhysRevLett.110.077203
http://dx.doi.org/10.1103/PhysRevLett.110.077203
http://dx.doi.org/10.1209/0295-5075/105/67006
http://dx.doi.org/10.1209/0295-5075/105/67006
http://dx.doi.org/10.1209/0295-5075/105/67006
http://dx.doi.org/10.1209/0295-5075/105/67006
http://dx.doi.org/10.1209/0295-5075/108/37008
http://dx.doi.org/10.1209/0295-5075/108/37008
http://dx.doi.org/10.1209/0295-5075/108/37008
http://dx.doi.org/10.1209/0295-5075/108/37008



