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Solitary Waves in a Shallow Viscous Fluid Sustained by an Adverse Temperature Gradient
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We show that shallow water waves in a viscous fluid are not damped if the fluid is adequately heated
from below. The critical temperature gradient needed to sustain the wave as well as its frequency are
determined analytically. The nonlinear evolution of the wave is governed by the Korteweg-de Vries

equation.

PACS numbers: 47.20.Bp, 47.35.+i

It is well known that in an inviscid shallow fluid soli-
tary waves, described by the Korteweg-de Vries equa-
tion, may propagate. ' In any physical situation, howev-

er, viscosity will damp these waves. On the other hand,
and without any apparent relation to this problem, we
know that if a fluid in a gravitational field is heated from
below, at a critical value of the temperature gradient or
equivalently of the Rayleigh number, the static state be-
comes unstable and convection sets in. At the critical
Rayleigh number the energy gain from buoyancy exactly
balances the loss due to viscous dissipation. The prob-
lem we address here is whether an adverse temperature
gradient may provide enough energy to compensate the
viscous losses that damp solitary waves in shallow fluids,
in a manner similar to what is observed in convection.
We shall show that under certain thermal and mechani-
cal boundary conditions this is in fact possible and,
therefore, we may expect solitary waves to propagate in

nonideal circumstances. We must mention that this is
not an original idea; previous attempts, though, were un-

successful.
A previous numerical study of the linear stability

theory of a fluid bounded above by a free surface and
subject to a temperature gradient showed that oscillatory
instabilities, which are not present when surface
deflection is not allowed, exist. In the case when the
lower surface is stress-free and at constant temperature,
and the free surface is maintained at fixed heat flux, a
long-wavelength oscillatory instability occurs at a critical
Rayleigh number R, =30, which is well below its value
for the onset of steady convection. This long-wave insta-
bility corresponds to shallow gravity waves. The main
features that permit this identification are the value of
the frequency which corresponds to that of standard
shallow gravity waves, and the flow pattern, which, in

leading order, consists of horizontal streamlines rather
than of closed loops as is usual in convective motion. In
this Letter we study the nonlinear evolution of this insta-
bility and show that undamped solitary waves described
by the Korteweg-de Vries equation may propagate in

viscous fluids.
Let us consider a fluid bounded above by a free sur-

face on which the normal heat flux is prescribed and

below by a plane stress-free perfect thermally conducting
medium. At rest the fluid lies between z=O and d.
Upon it acts gravity g = —gz. In the Boussinesq approx-
imation the equations that describe the motion of the
fluid are

V v=O,

po = —Vp+pV v+gp,dv 2

dt

dT vV2T
dt

p =pp[1 —a(T —Tp)],

(2)

(3)

gt+ugx =w

p —p. — ", [w. +u„g„'—g, (u, +w„)1 =O,2p

(5)

p(1 —tl„')(u. +w, )+2prb(w, —u, ) =O,

and

n VT= —F/k.

Subscripts x and z denote derivatives with respect to the
horizontal and vertical coordinates, respectively. Here
N=(1+g, ) 't, n =(—rt„o, 1)/N is the unit normal to
the free surface, F is the normal heat flux, k is the
thermal conductivity, and p, is a constant pressure exert-
ed on the upper free surface.

We shall assume that the lower surface is stress-free
and at constant temperature Tb. The boundary condi-
tions on the lower surface z =0 are then

W =Q, =0, T=Tb .

The static solution to these equations is given by

where d/dt =8/Bt+v. V is the convective derivative,
v=(u, O, w) is the fluid velocity, p is the pressure, and T
is the temperature. To and po are a reference tempera-
ture and density, respectively. The viscosity, p, thermal
diA'usivity, x., and coe%cient of thermal expansion, a, are
constant.

On the upper free surface z=d+g(x, t) the boundary
conditions are '
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T, = —F(z —d)/k + Tp, p, =pp[1+ (aF/k) (z —d)], and

p, =p, —gpp[(z —d)+(aF/2k)(z —d) ] .

It is convenient to adopt d as unit of length, d /v as
unit of time, ppd as unit of mass, and Fd/k as unit of
temperature. Then only three dimensionless parameters
are involved in the problem; the Prandtl number
a=p/pp~, the Rayleigh number R =ppgaFd /kIcp, and
the Galileo number G =gd pp/p .

In order to obtain the nonlinear evolution of the per-
turbations to the static solution we introduce slow vari-
ables defined by

(=E(x cr), r=E

and introduce the expansions

u =E (up+Eui+c u2+ ' ' ' ),
w t (wp+Ewi+6 w2+ ' ' ' ),
p ps —po+&pi+t-' p2+

T —T, =I90+eO]+~ 0 +
g=6 (rlp+Frli+E rtp+ ' ' ),

and proceed to solve to each order in e.
In leading order the asymptotic solution to Eqs.

(1)-(9) yields

~0 =po =o.
In the next order we find

Ol =pl=0, up=f(g, r),
wp = f~(g, r)z, rip

=—f(g, r)/c,

c2 =o-2 (10)

Again g(g, r) is an arbitrary function to be determined
at higher order. That this solution corresponds to shal-
low gravity waves is best seen when the speed is ex-
pressed in terms of the physical parameters of the prob-
lem. Recalling that we have used d /x as unit of time
and d as unit of length we obtain that the dimensional
speed is C=(gd)', which corresponds to the usual
shallow water wave speed. ' In the following order we
find

O =f~(z —3z)/6,

p3 =a Grll —2afg+ crRf~(z —6z +5)/24,

u2 fg((z —15z +39z )/24+h((, r),
w2 = f~~~(z

——21z +91z )/168 —h~z .

The solubility condition in this order determines the crit-
ical Rayleigh number R =30. Here too, h(g, z) is an ar-
bitrary function. The boundary condition for the posi-
tion of the free surface, Eq. (5), in this order determines
a relation between the arbitrary functions f(g, r),
h (g, r), and rlq which is

Finally, in order e we obtain

where f((, r) is an arbitrary function. In order e the
solution is given by

Op =0, p2 = cr Gyp, u i =g((, r),
w, = —g((g, r)z, q) =g(g, r)/c,

and the solubility condition determines the speed

O4= —cfog(z —10z +25z)/120+g((z —3z)/6,

p4=a Gt12+ag~(5z —30z +17)/4+15crf /c —cfr~(z —1)/2 —acf~~(z —15z +'75z —61)/24.

The solubility condition in this order is

30+aG ff + (272a —15)cf
C g C

l68 444.

(12)

We must request that Eqs. (11) and (12) be compatible.
This requirement determines the evolution equation for
the function f(g, r) which is

r

f + 3(10+aG) ff + ~G 17a + 1 f 0

The evolution equation for f(g, r) is the Korteweg-de
Vries equation, whose properties are well established.
Higher-order corrections, which do not interest us here,
determine evolution equations for the arbitrary functions
g and h. A particular solution for f is a single-soliton

2 =2crG (7+34a) ' '/[21A(10+ crG)] ' '

The existence of undamped solitary waves is possible
due to the fact that the energy released by buoyancy bal-
ances exactly the amount of kinetic energy dissipated by
viscosity. The detailed balance is best seen if we consid-
er the rate of change of kinetic energy given by

+v (v Vv) = —v. Vp+ av V v+ aROw .
Bt 2

(14)

f=A sech [((—Ur)/k],

where the amplitude-dependent propagation speed U and
pulse width k are given by U =A (10+crG)/2crG and
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To see how the present solution achieves this balance, we introduce the slow variables g and r, and the scaling
tt=f 'a=e (ttp+elt]+E ttp+ ' ' ' ), w=e w=e' (wp+Ew 1+ e wp+ . ), p=e p=e (p 2+ep 3+ ), and O=e 8
=e (03+ f04+ ). Then Eq. (14) becomes, after dropping the hat from all variables,

e ww, +E uu, 6cuug+E uugu+6 wuwg+E uwuz+E wwz

= —cup~ —ep, w+ae uu~~+cre ww„+o.uu„+o.e ww~~+crRe Ow.2 2

The leading orders of an expansion in e of this equation
are

uQuOzz Oi CuQuO( uQP2( P2z WQ &

u1p2$ uop3( p2 w 1 p3 w0+ uOu0$$

+ 0WQWQzz +0 u Ou 2zz + 0 u 2u Qzz +0R03WQ .
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The solution satisfies these conditions provided that the
speed c and Rayleigh number are the critical values
found as solubility conditions. This shows that the
amount of energy released by buoyancy is exactly the
amount dissipated by viscosity.

We have shown that a solitary wave in a viscous medi-
um may persist if the Auid is subject to an adverse tem-
perature gradient. Crucial to this eff'ect are the choice of
the thermal boundary conditions on the upper and lower
surfaces and of the mechanical boundary condition on
the lower surface. Surface tension does not modify this
result, provided that surface tension inhomogeneities are
sufficiently small.

We thank R. Benguira for useful discussions. This
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