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Oscillatory instabilities in the Rayleigh-Bénard problem with a free surface
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The linear stability theory of the Rayleigh—-Bénard problem when the fluid is bounded above
by a free deformable surface is studied numerically. When the free surface is thermally
insulated and the lower surface is isothermic the marginal curve for the onset of oscillatory
convection lies below the marginal curve for the exchange of stabilities.

I. INTRODUCTION

Many studies of convection assume that the boundaries
of the fluid are free and plane. It can then be shown that the
principle of exchange of stabilities is valid, that is, convec-
tion appears as a stationary instability.' In physical situa-
tions, however, the free surface is deformed due to the fluid
motion, the monotonicity principle is no longer valid, and
convection may appear as an oscillatory instability.

Previous work dealing with the effect of surface defor-
mation has concentrated on thermocapillary convection®?
and in cases when buoyancy effects have been included, the
exchange of stabilities has been assumed without proof.**
The linear stability of buoyancy driven convection in a single
fluid with a free deformable surface with respect to time-
independent perturbations has been studied numerically.” In
the absence of surface tension, the effect of surface deforma-
bility is measured by the Galileo number G. When the heat
flux is fixed on the boundaries of the fluid, surface deforma-
bility has no effect on the linear stability theory with respect
to time-independent perturbations.® When the temperature
is fixed on the boundaries, for large values of the Galileo
number, surface deflection is unimportant. For small values
of the Galileo number, it is destabilizing, an effect which is
stronger for the longest wavelengths.® Recent work has dealt
with the two-layer Bénard problem. In a series of articles the
linear stability of two nearly identical superimposed fluids
has been considered. This system exhibits an oscillatory in-
stability when the Rayleigh number is very close to the criti-
cal number for the one-fluid problem,”'? but no such insta-
bility is found when the Rayleigh number is below the
critical value.!' However, since complete marginal curves
are not calculated, such instability must not be ruled out.
Also related to the problem we study here is the new instabil-
ity found by Yih'? which occurs when two similar superim-
posed fluids flow down an inclined plane. When the upper
fluid is less thermally conductive a long wavelength oscilla-
tory instability is present.

In this article, we study the linear stability of a two-
dimensional layer of fluid of infinite horizontal extent
bounded above by a free deformable surface upon which a
constant pressure is exerted. The lower surface of the fluid is
plane. We have calculated numerically the marginal curves
for oscillatory instability for different thermal boundary
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conditions. We find that when the temperature is fixed on
the lower boundary and the heat flux is fixed on the free
upper surface, the oscillatory instability occurs at values of
the Rayleigh number lower than the critical value obtained
when the upper surface is plane. We must remark that the
instability found here is a new one and is not a limiting case
of that found previously.®'" In Refs. 9-11 the instability
appears for nearly identical superimposed fluids and for val-
ues of the Rayleigh number near criticality,” whereas we find
such an instability for a fluid bounded above by a passive gas
which does not interact with the fluid. The instability we
have found occurs at values of the Rayleigh number signifi-
cantly lower than the critical value for the exchange of sta-
bilities and is due exclusively to the surface deformation. It is
worthwhile mentioning, however, that the thermal bound-
ary condition for which we find oscillatory instabilities at
low Rayleigh numbers corresponds to an upper thermally
insulating medium, which is a limiting case of the thermal
boundary condition producing oscillatory instabilities in the
system studied in Ref. 12.

Il. MATHEMATICAL FORMULATION

Let us consider a two-dimensional layer of fluid of infi-
nite horizontal extent which, at rest, lies between z = 0 and

— d. A constant gravitational field g = — gZ acts upon it.
The fluid is described by the Boussinesq equations
Vv=0, (1)
av 2
m~§+%va==—Vp+qu+gm (2)
9T | (vwV)T=«V7T, (3)
or
p=poll —a(T—Ty1, (4)

where v = (u,w) is the fluid velocity, p is the pressure, and 7’
is the temperature. The density p is considered a constant g,
except in the external force term.

The viscosity u, thermal diffusivity «, and the coefficient
of thermal expansion ¢ are constant. Here T, is a reference
temperature which we choose as the static temperature on
the upper surface. The static solution to Egs. (1)-(4) is

T, =Adz + T, (5)
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ps = po(l —adz), (6)
Ps =P, — 8po(z — adz’/2), (N
where p, is a constant pressure exerted on the upper surface
and A4 is a constant to be determined from the thermal

boundary conditions. The boundary conditions on the lower
surfacez = —d are

v=0 (8a)
if it is a rigid surface, or
u, =w,=0 (8b)

if it is free but plane. Subscripts x and z denote derivatives
with respect to the horizontal and vertical coordinates, re-
spectively. The thermal boundary conditions are

T=T,, (9a)

if the fluid is bounded below by a thermally conducting me-
dium, or

T, = —F/k (9b)

if it is bounded by a thermally insulating medium. Here F is
the normal heat flux and k is the thermal conductivity. On
the upper free surface z = 7(x,¢) the boundary conditions

are!

a constant

N, +un, =w, (loa)

P—P.=2u[nu, — . (u, +w,)+w, ] +73)",
(10b)

(1 —72)(u, +w,) + 29, (w, —u,) =0. (10c)

We have not included surface tension since our main interest
is to clarify the validity of slip boundary conditions. As will
be seen later, the instabilities found are important for very
long wavelengths, so surface tension has a small effect on
them. Here, too, we have two types of thermal boundary
conditions,

T = Tu R ( 1 la)
or

aVI'= — F/kN, (11b)
where N = /1 + 7% and A= ( —7,,1)/N is the normal
unit vector to the free-surface. Thus according to the ther-
mal boundary conditions we have the following cases.

Case (i):

T( - d) = Tb’
Case (ii):
T,(—d)= —F/k,
A= —F/k

Case (iii):
T(—d)=T,nVT(n)= —F/kN, A= —F/k
Case (iv):

T,(—dy= —F/k, T(9)=T,, A= —F/k.

We have solved cases (i)—(iv) numerically, each of them for
rigid and slip boundary conditions on the lower surface.
Let us now linearize the equations around the static so-
lution. Adopting d as the unit of length, d >/« as the unit of
time, pod * as the unit of mass, and ( — A4d) as the unit of

T(g) =T, A=(T,—T,)/d.

nVT(y) = — F/kN,
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temperature, the linear equations for the perturbations p’, p’,
and T’ to the static pressure, density, and temperature, re-
spectively, are

Vv =0, (12)

v, = — Vp' +0V?v — Go?p's, (13)

T:—w=VT, (14)

p =(R/0G)T’, (15)
subject to

u(—1)=w(—-1)=0 (16a)
or

u (-1 =w,(—-1)=0, (16b)
and

T'(-1)=0 (17a)
or

T(—-1)=0 (17b)
on the lower surface; and

7, =w(0), (18)

u,(0) +w,(0) =0, (19)

—p'(0) 4+ Go*n + 20w, (0) =0, (20)
and

T:(0)=0 (21a)
or

T'(0) =1. (21b)

The dimensionless numbers that appear are the Rayleigh
number R = ( — 4)d “ga/«v, the Prandtl number o = v/,
and the Galileo number G = gd 3/+*. Equations (12)-(21)
completely describe the problem.

. LINEAR STABILITY

Assuming that all perturbations evolve in the horizontal
variable and time as e“*¢", the linear equations for the per-
turbations reduce to

(D? —a® - A)6(z) = iay(z), (22)
(D?—a®>)(D*—a>—A/o)Y(z) =iaR6(z), (23)

where 6(z) is the amplitude of the temperature perturbation
and 1(z) is the amplitude of a streamfunction ¢ in terms of
which the velocity is v = (¢,,0, — ¢, ). Here D denotes a
derivative with respect to z. The boundary conditions for the
amplitudes of the normal modes are #( — 1) = Dy( — 1) if
the bottom is rigid, or ¢#( — 1) = D %( — 1) = Oifitis free.
On the upper surface, they reduce to

An + iay(0) =0, (24)
(D*+a*)¥(0) =0, (25)
AD3(0) — A (3a® + A /o) Dy(0) — a’oGy(0) =0. (26)

The four cases for the thermal boundary conditions are as
follows.
Case (1):

0(—1)=0, 6(0)= —iap(0)/A.
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Case (ii):

DE( —-1)=0, DO(0)=0.

Case (iii):

6(—1)=0, DI(0)=0.

Case (iv):

DO(—-1)=0, 6(0)= —iayp(0)/A.

The equations are linear, and therefore the solution for ¢ is of
the form

3
¢ =Y {4, sinh[a,(z+ 1)] + B, cosh[a, (z + D1
i=1

where the a,’s are the three different roots (neglecting
changes of sign) of (a®—a*)(a®—a*—A/0)
X (a? — @* — ) + a?R = 0. The solution is obtained by re-
quiring ¥ to satisfy the boundary conditions. The eigenval-
ues R and A are found as the roots of a 6 X 6 determinant
which may be reduced to simple three-dimensional vector
products. Details are given in the Appendix. We have solved
this determinant for the four cases of thermal boundary con-
ditions mentioned above, each of them for rigid and free
bottom surfaces. The numerical method was checked
against the known curves for the exchange of stabilities.

IV. NUMERICAL RESULTS

We have first examined the time-independent linear sta-
bility theory. The effect of surface deformation appears as a

R <10’

G =100

Log‘g(mu)
T

T T T
05 10 15 20

FIG. 1. Marginal curves for overstability for different values of G. The

dashed line corresponds to the exchange of stabilities (R, = 669; a. = 2.09

is the critical point on the dashed line). The lower surface is rigid and iso-

thermic and the upper surface is free and insulated.
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modification to the thermal boundary condition on the up-
per surface. Such an effect is present only when the tempera-
ture is fixed on the upper boundary. In agreement with pre-
vious results,® we find that surface deformation has a
destabilizing effect, that is, the critical Rayleigh number
when the Galileo number G is finite is lower than its value
when G becomes infinite, in which case there is no surface
deformation. In general, for fixed wavenumber, the margin-
al Rayleigh number has a lower value when G is finite. To
conclude, for time-independent stability surface deforma-
tion has no effect in cases (ii) and (iii) and is destabilizing in
cases (i) and (iv). Now, we describe the results for oscilla-
tory instability. We find that when the temperature is fixed
on the upper boundary [cases (i) and (iv) ] there is no oscil-
latory instability for values of R, ¢, and G within reasonable
ranges. This is true for both rigid and stress-free boundary
conditions on the lower surface. When the heat flux is fixed
on both surfaces [case (ii) ] there is an oscillatory instability,
but it occurs at values of the Rayleigh number much higher
than those for marginal stability and therefore will never be
observed. When the temperature is fixed on the lower sur-
face and the heat flux is fixed on the upper free surface [case
(iii) ] we find that there is an oscillatory instability which,
depending on the mechanical boundary condition on the
lower surface, occurs at values of R lower than the critical
value for the exchange of stabilities. When the lower surface
is rigid (Fig. 1) the marginal curves for overstability have
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FIG. 2. Marginal curves for overstability for different values of G. The
dashed line corresponds to the exchange of stabilities (R, = 384.7; a.
= 1.76is the critical point on the dashed line). The lower surface is free and
isothermic and the upper surface is free and thermally insulated.
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FIG. 3. Smail wavenumber region of the graph shown in Fig. 2.

their minimum at a finite value of the wavenumber and
merge with the time-independent marginal curve. The criti-
cal Rayleigh number for overstability is an increasing func-
tion of G. The behavior of R, as a function of G is, in this
case, similar to that found in a recent experiment.'* For
small values of G, the oscillatory instability occurs at lower
values of R than the time-independent instability. As G in-
creases, the situation reverses. We must recall, however, that
we have assumed that the fluid is described by the Boussin-
esq approximation which is valid when density variations
across the layer are small. From Eq. (15) we see that this

FIG. 4. For the same boundary conditions as in Fig. 2, marginal curves for
overstability for different values of the Prandt] number.

corresponds to R €oG. Therefore, within the range of valid-
ity of the Boussinesq approximation, overstability occurs at
values of R larger than the critical value for the onset of
steady convection. With the same thermal boundary condi-
tion, when the lower surface obeys the idealized stress-free
boundary condition, the wavenumber that first becomes un-

3
10 T x10
075
0.5 j
FIG. 5. Growth rates for the
_ overstable curves shown
0.25 Fig. 3.
10a
0.0 + $ + + + + + +
04 0.2 03 0.4 05 0.6 07 0.8
-0.25 R 50 6=4000 6= 2000 G =1000
g=10
-0.5
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stable is a = 0, and the critical Rayleigh number is R, = 30
for all values of o and G. The value R_ is lower than the
critical value for the onset of steady convection. In Fig. 2,
curves for the onset of overstability are shown for different
values of G. They all merge with the marginal curve (dashed
line). The value of R at which they merge increases with G.
In Fig. 3 we show, for fixed o, the curves for different values
of G; they all converge to R, = 30. As mentioned above, this
is true for all values of ¢. In Fig. 4, the marginal curves for
overstability are shown for fixed G and different values of o.
We can see that they merge with the marginal curve for the
exchange of stabilities at a value of R that increases with o.
Although not shown in Fig. 4, they all tend to R, = 30 as a
goes to zero. Growth rates for the oscillatory instability are
shown in Fig. 5. The maximum growth rate occurs at a finite
value of a, a value which depends on G.

V. SUMMARY AND CONCLUSION

We have solved the linear stability theory of a Boussin-
esq fluid with an upper free surface. The linear equations
were solved numerically for different thermal boundary con-
ditions and for rigid and slip conditions on the lower surface.
Our purpose was to examine the validity of idealized stress-
free boundary. We find that oscillatory instabilities are pres-
ent, but only when the temperature is fixed on the lower
surface and the heat flux is fixed on the upper free surface
does the marginal curve for overstability lie below the mar-
ginal curve for the onset of steady convection. In addition,
we must constrain our results to values of R € oG, a restric-
tion imposed by the Boussinesq approximation, in which
case only when the lower surface is free does overstability
occur before steady convection. We have not included sur-
face tension since our main interest was to study the effect of
the nonideal stress-free boundary condition alone; for the
more interesting case we do not expect significant alterations
because of the fact that the longest wavelengths are the most
unstable ones.
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APPENDIX: FORMULAS FOR THE DETERMINANTS

The 6 X6 determinants of Sec. III can be reduced to
simple three-dimensional vector products. Let us define the
quantities

D, = [unf|][agr] + [snfi]lahg] + [vnfi]larh ],
D, = [nsul[afig] + [nuv][afor] + [nos][afoh],
D, = [fsrh][vny] + [fshg)lsny] + [fsgr][uny],
D, = [ghr],

Al)
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where [abc] denotes the box product a-(b X ¢) for vectors in
R3?. Here n denotes the vector (1,1,1), a = (a,,a,,a4),
and y = (a?,a3,03), where @, @,, and a; are the three
different roots of (a®—a?) (@®—a*— A /o)
(a® — a* — A) + a*R = 0. Thefunctions f,, /5, 3, & h, 1, v, 1,
and s are understood as the vectors f, = [f,(a}), fi(ay),
f1(a3) 1, ete; their explicit form is given by

i)y =F—a® =),
f(x) =x(x* —a*) (x> —a* — A /o),
fo(x) =x/(x* —a* = A),
g(x) = (a* + x%)sinh(x),
h(x) = Ax(x?* — 3a®> — A /o)cosh(x) — Ga’o sinh(x),
u(x) = Ax(x* — 3a*> — A /o)sinh(x) — Ga’o cosh(x),

v(x) = (&* + x%)cosh(x).

(A2)

As for the functions s(x) and r(x), they may adopt two
different values depending on the boundary condition:

s;(x) =cosh(x)/(x* —a®> —A)*(x*—a*—A /o) (A3)
or
5,(x) = x(x* — a®) (x* — a* — A /o)sinh(x), (A4)
and
r(x) =sinh(x)/(x* —a* = A)*(x* —a* — A /o) (AS5)
or

7 (x) =x(x% —a?)(x? —a®> — A /o)cosh(x). (A6)

Then, according to the thermal boundary conditions
and the mechanical boundary condition on the lower surface
we must solve

Case (i) Case (ii) Case (iii) Case (iv)
rigid lower surface D =0 D,=0 D=0 D,=0
free lower surface D=0 D,=0 D;=0 D, =0,

where s = 5, and r = r, for cases (i) and (iv) and s =5, and
r = r, for cases (ii) and (iii).
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