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We consider the problem of the speed selection mechanism for the one-dimensional nonlinear
diffusion equation u, = u„„+f(u). It has been rigorously shown by Aronson and Weinberger that for
a wide class of functions f, sufficiently localized initial conditions evolve in time into a monotonic
front which propagates with speed c* such that 2''(0) ~ c' ~ 2V'sup(f(u)/u). The lower value

cL = 2gf (0) is that predicted by the linear marginal stability speed selection mechanism. We derive
a new lower bound on the speed of the selected front, this bound depends on f and thus enables us to
assess the extent to which the linear marginal selection mechanism is valid.

PACS numbers: 82.40.Ck, 03.40.Gc

In several problems arising in biology, population dy-
namics, pulse propagation in nerves, crystal growth, fluid

flow, and others, it is found that if the system is suddenly
made unstable, the subsequent dynamics is characterized
by the propagation of fronts. The systems for which this
phenomenon occurs have received much attention recently,
especially related to the problem of pattern selection. A
small perturbation at a localized point grows to eventu-

ally cover the whole space. An important problem to be
solved has been the determination of the speed at which
the front of the pattern moves into the undisturbed regions
of the system and the wavelength of the pattern left be-
hind. (For a recent and extensive review of this subject
we refer to [1] and references therein. ) Several authors

[2—5] have formulated criteria that provide an answer to
these questions. These criteria are heuristic extensions to
higher order equations of rigorous results and heuristic ar-

guments which have been developed for the nonlinear dif-
fusion equation

u, = u„„+f(u),

where f(u) E C'[0, 1], f(0) = f(1) = 0. In what follows
we assume that f is positive in (0,1). In this case u = 0
is the unstable fixed point and u = 1 is a stable fixed
point. Aronson and Weinberger [6] have shown that any
positive initial condition uo(x) & 1 for all x, which decays
exponentially or faster at infinity, will evolve into a front

propagating with speed c . This asymptotic speed is the
lower speed for which Eq. (1) has a monotonic front

joining the stable state u = 1 to the unstable state u = 0.
Moreover,

mogorov, Petrovsky, and Piskunov [8] using an heuristic
argument (the linear marginal stability mechanism) which
is equivalent to the conjecture that the asymptotic speed
of the front is that for which a perturbation to the front
is marginally stable in the frame moving with the front
speed. Based on the applicability of this argument for
the Fisher-Kolmogorov equation and more generally for
concave functions f, several authors have developed ex-
tensions of this argument to higher order equations. These
generalizations are purely heuristic, the only rigorous
results available being those of Aronson and %einberger.
In general, however, sup(f(u)/u) is not f'(0) and Eq. (2)
gives a bound on the selected speed. It is known that for
some choices of f, and explicit examples have been given,
c* is greater than 2. These cases, referred to as those in

which a nonlinear marginal stability mechanism operates,
have been generalized [5] for higher order equations based
on the observation that for the nonlinear diffusion equation
the selected front is that with the steepest decay to zero.
The exact point of transition from the linear marginal
stability to the nonlinear regime has been determined for
functions f of the form f(u) = p, u = u" —uz" ' for
which an exact solution for a monotonic front can be
given. It has been shown that for p, smaller than a critical
value, the solution corresponds to a nonlinear marginal
stability solution [9]. To the best of our knowledge, the

only lower bound on the speed that, for general f, shows

that the linear speed is not always preferred, has been

given recently by Berestycki and Nirenberg [10]. They
show that

c ~ 2 g'(u) du
()

2 '0 ~c*&2 sup u u (2)

For the special case of the Fisher-Kolmogorov equa-
tion f(u) = u —u3, f'(0) = 1, and sup(f(u)/u) = I

so that c* = 2. In general [7], for any concave f(u),
sup(f(u)/u) = f'(0), and c* = 2''(0). The value
c* = 2 is the value which had been derived by Kol-

from which it is evident that for sufficiently large f the

speed exceeds the marginal value cL. The purpose of this

work is to give a new bound that enables one to evaluate
the regime of validity of the linear marginal stability mech-

anism with increased accuracy. As shown by Aronson and

%einberger, the asymptotic speed of the front is the low-
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dp
p(q) d

—c'p(q) + f(q) = 0, (4a)

with

est for which there is a
tionu = q(x — *t . & . Th

is a monotonic travelin
'

g wave solu-
t o. ~ ~. The selected speed satis-

qzz c qz + f(q) = 0, limu, = 1
—c t.

re monotonic fronts obe ay q to of

d o o d tot}lt
e original equation. Since the

we may consider the dependence
o at o a decreasin m

q/ g, he e t minus sig is

e so t at p is positive, we find that
fronts are solutions of

at the monotonic

1

c* ~ 2 Qfghdq

where

g ~0 and h = —g'~0 in (01).

That this result yields a better bound than tha
Eq. (3) can be seen by choosin

0[
Next we illustrate the use of this bound b a

ill strate the use of th' b, takeo is ound, we take
f o A, P

d (1) =O Th
s. s a first trial choose

(6a)

(6b)

p(0) =0, p(1) =O, p &0 in (O 1 (4b)
1

gi(q) = f(x) dx,
q

The bound follows
'

sinasimplewayfromE . 4a
any positive function in (0,1) such that h =—

p an integrating with respect

f h
f(q)p+ g dq=c" gdq,

where the first term is obtained after inteHo, i h f g positive, we have thate p. . . and are

hp + ~ 2gfgh
f(q) g

hence we obobtain our main result,

then

4 1
- 3/2

c ~ — f(q)dq f
1

qf(q) dq. (7)

As a second trial function we choose

tll 1 i i R f.
unction g3 q = exp( —sx). Con

'
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at larger a. The solid line corresponds to the bound with
the trial function g3 with s = 7, the short dashed line
corresponds to the bound obtained using g~ with s = 0.5,
and the long dashed line is the bound using g] calculated
from Eq. (7). Aronson and Weinberger's criterion shows
that linear marginal stability is valid for 0 ( a & 1, and
our bound indicates that it is not valid for a ~ 3.6. As we
said above, the exact solution for this case is known; the
transition value from linear to nonlinear marginal stability
occurs at a = 2. Next we apply the bound to the quartic
polynomial f = x(l —x)(1 + ax2). In this case the exact
solution is not known and neither is the transition value
from the linear to the nonlinear regime. The results are
shown in Fig. 2, where we have used the same labeling
and type of line as in Fig. 1. Aronson and Weinberger's
criterion guarantees that linear marginal stability is valid
for 0 ~ a ~ 4, and of the simple bounds calculated here
the best shown in the picture corresponds to that obtained
with g2 for s = 0.1 which shows that linear marginal
stability is not valid for a ~ 10.3. One could, of course,
attempt to obtain a sharper estimate by choosing better
trial functions, but this is not our purpose here.

In conclusion, it is evident from the present results that
for all nonconcave functions f(u) the linear speed cL is
the asymptotic speed in a rather limited region. There
is no substantial difference in the behavior of arbitrary
polynomials, for which no exact solutions are known, with
those already analyzed in the literature for which the exact
solution and point of transition can be calculated. Once
the function f becomes sufficiently large, the selected
speed will be that of the so-called nonlinear front. Given
the limited validity of the linear selection mechanism
for the nonlinear diffusion equation a similar situation
can be expected for higher order equations. Moreover,
since the lower bound on the speed depends on the
integral properties of f, it is not difficult to imagine a
situation where two functions are identical near the origin
and differ significantly near u = 1. In that case it is
possible that the asymptotic speed for one of them be the
linear value and for the other the nonlinear value. No
local analysis of the approach to u = 0 can then predict
the transition from the linear to the nonlinear marginal
stability regime. Finally we wish to point out that the
analysis of monotonic fronts in phase space is useful
not only in the case presented here but for generalized
diffusion equations and in higher order equations as well.
For the porous media equation

u, = (u )„„+f(u),

with f(0) = f(1) = 0, and f & 0 in (0,1) monotonic
fronts may exist for

1

c ~ 2 Qfohdq

where o.(u) ) 0 must be chosen so that

h(u) —= m—u 'o'(u) ~ 0 in (0, 1).

For a more general equation

u, = (P(u))„+ f(u),
with @' & 0 E (0, 1), P(0) = 0,

with the same conditions on f, monotonic fronts may exist
for

where o (u) & 0 must be chosen so that

h(u) —= —tr'(u) @'(u) ) 0.

The details will be given elsewhere. It has been applied
by us to obtain bounds on the speed of certain third order
nonlinear differential equations of the type which arise
in crystal growth problems [12] and for the dispersive
Kuramoto-Sivashinsky equation [11]. It also enables one
to characterize the type of functions f(u) for which
the exact point of transition to the nonlinear regime in

the nonlinear diffusion Eq. (1) can be calculated without
solving the equation explicitly [11]
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