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Variational calculations for thermal combustion waves
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We use a variational principle for reaction diffusion equations which enables us to obtain simple
analytical estimates for the speed of a Game valid into the region where the rate of heat release is
not localized.
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I. INTRODUCTION

It is well known in the theory of thermal propagation of
Games that in simple cases the problem can be modeled
by a simple one-dimensional reaction diffusion equation
[1,2]

8, = 8 + (u(8),

where the reaction term is given by the Arrhenius law,
which in a reduced version is of the form

ur(8) = (1 —8)" e~ ) —e

where the term e ~ is introduced to remedy the cold
boundary problem [3,4]. Other formulas for reaction
terms have been considered [4,5], and they all share sim-
ilar qualitative features. For simplicity we consider only
one case; the results given here can be applied to those
cases as well. The degree of localization of the reaction
zone is measured by the Zeldovich number P. For very
large P, the width of the reaction zone is narrow and
the speed of the Game is given by the Zeldovich-Prank-
Kamenetskii (ZFK) formula [1]

( i ) 1/2

cZFK =
~

2 ~(8) d8
)

( j v —cugg' d81c=sup I 2

y,'gd8 )
'

II. APPROXIMATIONS FOR ARBITRARY co

We are interested in estimating the speed of monotonic
fronts 8(x —ct) of Eq. (1). These fronts satisfy

8„+ c8, +. ur(8) = 0, lim 8=1, lim 8=0, (6)
Z ~—OO Z ~OC&

where z = x —ct and we assume that c is positive. Defin-
ing p = —d8/dz one finds that monotonic fronts satisfy

p(8) ——cp(8) + ~(8) = o,
dJ

d0

where g is a positive monotonically decreasing function.
The purpose of this work is to analyze the connection be-
tween this exact result and the czFK value and to show
that by making use of the variational principle it is pos-
sible to obtain simple analytical formulas that reproduce
the numerical values of the speed in a wide range of P.
In Sec. II we obtain results valid for arbitrary ~ and in
Sec. III these results are applied to the case in study.
We obtain simple analytical formulas and compare them
with numerical results &om integration of the partial dif-
ferential equation.

which is the exact value in the limit P —+ oo. For values of
P ( 2 the reaction term is concave and the speed is given
by the Kolmogorov-Petrovski-Piskunov (KPP) value [6]

with

&(0) = &(1) = o with p ) 0.

cKpp = 2$(u'(0). (4)

Realistic values of P lie between these two extremes. The
transition between these two regimes has been studied
numerically and in cases where the reaction function u
adopts a simple form that allows the exact solution of
the problem [3,4]. Corrections to the ZFK formula have
been obtained by means of asymptotic expansions in the
parameter 1/P [4]. The prescription has been [3] to take
the larger value between czpK (or its corrections) and
cKpp as the best approximation to the correct value of
the speed. We have shown recently that the value of the
speed for arbitrary ~ derives from a variational principle

The variational principle Eq. (5) can be deduced from
the equation for p. It follows that

jo v' —egg' d8c&2 '
I'gd8

As a first step we shall show that the ZFK value for the
speed is a lower bound for all tu (a different proof has
been given directly &om the ordinary differential equa-
tion elsewhere [8]). To do so, choose as a trial function
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fo (ud0c&2 = 2 cud0=czFK,
g(O) o

that is, the speed is always greater than the ZFK value.
Next we construct a set of functions g for which the
bound can be expressed in terms of simple integrals of
u. Define

1

P(x) = sud0

and let

g(~) = [&(*)]"
Then g' = nut" ~. W—ith this choice the integrals can
be performed readily. For the numerator we obtain

1
%=2 g—urgg'd0= P + ~ (0)

0 2n+ 1

with 1/2 & n & 1. For the denominator we may approx-
imate

1 1
p

1

D= gd0= P" dx&
~

P(x)dx
~

o o ( o

( 0~(0)d0
~

.
0

Therefore the speed satisfies

(14)

With this choice we obtain
1 1

Q—~gg'd0 = (ud0
0 0

and we have that

f
1 1 1

g d0 = — g'0 d0 & — g' d0 = g(0),
0 0 0

where we have used the fact that g(l) = 0. Repjacing
these results in Eq. (7) we obtain

for r = 1 and r = 2 as examples. As a first step
we have performed numerical integrations of the reac-
tion diffusion equation taking sufFiciently localized initial
conditions that guarantee the asymptotic approach to
the monotonic front [9]. For the time evolution opera-
tor we have used a Trotter product formula. The time
evolution was made by means of alternate application
of propagators associated with the diffusion and nonlin-
ear terms. A semi-implicit finite-difference algorithm for
partial parabolic equations was used for the diffusion gen-
erator. A fourth order Runge-Kutta applicated through
every point in the discrete lattice was used for the nonlin-
ear generator. The method was tested in cases for which
an exact solution is known. The error never exceeded
three-tenths of a percentile.

For the value of u above with r = 1 we have that

cKpp = 2&Pe-&, (16)

p')
0(ud0 = —P —2+ e ~

~
2+ P ——~, (17)

p ( 6y

p')B= (ud0= —1 —e ~~ 1+P+ —
~

o

cZFK +2B.

The results of the calculations are shown in Fig. 1. The
results of the numerical integration of the PDE are shown
with a solid line, and the dashed lines correspond to the
KPP and ZFK values whereas the dot-dashed line is the
result of the variational bound obtained using the ex-
pression (14) given above. For large P the best value for

This bound is valid for 1/2 & n & 1 and for arbitrary
cu such that w(0) = w(1) = 0 and cu ) 0 in (0, 1). In
addition one can maximize with respect to n. The best
n is given by

1 —In(p) —/[in(p) —1]2 —4 In(p)
4 In(p)

where

&(O)

fo 0cu(0) d0

When there is no real solution for n, the best choice is
n = 1.
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III. BOUNDS FOR THE COMBUSTION CASE

In this section we shall apply the above results to the
case

FIG. 1. Speed of the fronts as a function of the Zeldovich
parameter P obtained from the integration of the PDE for
uq is shown with a solid line. The linear KPP value and the
ZFK values predict the speed in the low and large P regime,
respectively. For large and intermediate values of P a closer
estimate is obtained from the variational principle.
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1
2'

and

2
t-ZFK (2O)

the variational parameter is the n = 1/2 value which in-
creases with decreasing P. For P ( 13 the best result is
obtained with n = l. As shown in the graph, this varia-
tional bound approximates closely the numerical results
for P larger than 6. Due to the form chosen for the
trial function g it is possible to give a simple approximate
expression for this curve.

For large P,

Similar simple approximations can be obtained for other
choices of u provided that the integrals of u and Ou can
be calculated. Notice that the simple expressions (21)
and (22) above cannot be obtained by perturbation the-
ory. For lower values of P the approximations made are
no longer valid and the full expression for A. and B must
be used. If one is interested in the transition from the
linear or KPP regime to the nonlinear one, a simple trial
function of the form g = exp( —sx) with s as a variational
parameter gives a closer approximation to the speed for
low P. In the present case this trial function predicts the
transition at P = 4.1 whereas the numerical integrations
set it at P = 3.1 in agreement with previous work [2j. The
exact transition point from the linear or KPP regime can
be predicted using the variational principle as accurately
as desired by judicious choice of trial function.

For r = 2 similar results hold. We do not give the
details which are straightforward. For large values of P
we obtain

With n = 1/2 we obtain
2

cZFK = (23)

and with n = 1 we have

2

~(~-2)

4 1

(21)

(22)

and a good approximation to the bound given in Eq. (14)
for large P is given by

4~2 1

3 Wn(/3 3)-
In Fig. 2 we show again the results of the numerical cal-
culation together with the ZFK value and these approx-
imate expressions for large P. For very large values of
P, exactly P ) 18 the value cqy2 is a closer approxima-
tion and tends to the ZFK value for P ~ oo but for
5.5 ( P ( 18 a much better approximation is obtained
with c~. We notice that the approximate value cq gives
a good approximation even beyond the region where it
is strictly valid, as it departs kom the bound shown in
Fig. 1. As an example, at P = 7, the value obtained from
czFK is 35% below the exact value, the bound obtained
from (8) is 5%%uo below, and the approximate formula cz
is less than l%%uo below. At larger P the error diminishes.

if we take the variational parameter n = 1 and

2

PV'/3 —3

for the variational parameter n = 1/2. As in the previous
case, for very large P, n = 1/2 yields a better approxima-
tion and n = 1 is a better approximation for moderate
values of P. These results are shown in Fig. 3. The solid
line corresponds to the results of the numerical integra-
tion of the PDE, and the dashed lines correspond to the
ZFK and KPP values. The dotted line is the bound Eq.
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FIG. 2. As in the previous graph the solid line depicts the
speed obtained from the numerical integration of the PDE.
The approximate analytical formulas c& and cz/2 approximate
the correct value of the speed in a wide region.

FIG. 3. Numerical and approximate results are shown for
u2. The solid line corresponds to the speed obtained from the
numerical integration of the PDE. The KPP, ZFK, and the
bound c~ are shown. The approximate formula c~ reproduces
the numerical results in a wide range.
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(14). The dot-dashed line corresponds to the approxi-
mate expression cq for large P.

IV. CONCLUSION

We have studied the problem of the velocity selection
for the reaction diffusion equation in a case relevant to
combustion theory, namely very localized reaction terms.
Starting &om a variational principle which yields the ex-
act speed in principle, we have shown that the ZFK for-
mula is a lower bound for the speed. We derive an ap-
proximate result for the speed valid for arbitrary reaction
functions, which, when applied to a case of relevance in

combustion, is seen to give a better analytical simple ap-
proximation than the ZFK value. These approximate for-
mulas are not obtainable &om a perturbative approach.
The method used here can be extended to other cases
such as 8; models or to density dependent diffusion co-
efficients [10,11] to obtain simple approximate analytical
expressions in other cases as well.
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