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Speed of Fronts of the Reaction-Diffusion Equation

R.D. Benguria and M. C. Depassier

Facultad de Fsica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile
(Received 6 December 1995

We study the speed of propagation of fronts for the scalar reaction-diffusion equatien
uy, + f(u) with f(0) = f(1) = 0. We give a new integral variational principle for the speed of
fronts joining the state = 1to u = 0. No assumptions are made on the reaction té(n) other than
those needed to guarantee the existence of the front. Therefore our results apply to the classical case
f >0in (0,1), to the bistable case, and to cases in whichas more than one internal zero(ih 1).
[S0031-9007(96)00796-X]
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The one dimensional reaction diffusion equation a lower bound on its speed [14]. Another reaction term
B i B B of type A, that of a functiory approaching a Dirac delta
= uxe + fw) with f(0) = f(1) =0, (1) fynction atu = 1 was studied in relation to combustion

with f(«) € C'[0, 1], has been the subject of much Studyphenomena by Zgldovich and Frank-Kamenetskii. They
as it models diverse phenomena in biology, populatiorsfowed [15] that in that case the speed tendezik =

dynamics, chemical physics, combustion, and others [1+/2 f(l) f(u)du. For an arbitrary reaction functiopfi(u)

5]. Not only is it in itself of interest, but based on the a local variational principle of the minimax type exists
rigorous results available for this equation diverse methodpt,16]. For reaction terms of types A and B we have shown
applicable to pattern forming systems have been developatat an integral variational principle of the Rayleigh-Ritz
[6-9]. In applications, the reaction terrfiu) obeys type exists [17,18]. Recently an interesting conjecture
additional requirements depending on the phenomenofi9] has been put forward for a restricted class of reaction
being modeled. Three types of nonlinearities appear téunctions.

be generic, and are shown in Fig. 1. Type A, for which The purpose of this Letter is to show that the speed of
f >0 in (0,1) is the class to which the classical casethe front joining the statet = 1 to u = 0 derives from

of Fisher [10] and Kolmogorov, Petrovskii, and Piskunovan integral variational principle without any restriction on
(KPP) [11] belongs. Type B, usually referred to as thef other than those needed to guarantee the existence of
combustion case, satisfieg= 0 on (0,a) and f > 0 the front. The derivation follows an approach similar to
on (a, 1), while finally, type C, called the bistable case, the one used to obtain the principle valid only for positive
satisfiesf(u) < 0 for u in (0,a), f > 0 on (a,1) with  reaction terms. This new principle, however, which is
f(l)f(u) du > 0. More general cases fgf, namely cases valid for all cases, is not related, nor equivalent, to the
in which f has more than one internal zero, have also beeprevious one.

studied [12,13].

The time evolution of an initial conditiom(x,0) has
been studied for all the cases mentioned. It was proved
[14] that for suitable initial conditions the disturbance
evolves into a monotonic traveling fromt= g(x — ct)
joining the stable state = 1 to u = 0. In case A there
is a continuum of values af for which a monotonic front
exists, and the system evolves into the front of minimal
speed. In cases B and C there is a single isolated value of
the speed for which the front exists. In these last two cases
there are threshold effects, and necessary conditions for the
evolution of the system into the front have been established
as well [12,14]. The same is true for reaction terms with
more than one internal zero [12]. The problem which
interests us here is the determination of the asymptotic
speed of the front. There have been numerous studies of
this problem. A very complete review is given in [4].
For reaction terms of type A which in addition satisfy

f'(0) > f(u)/u the speed is given by [11] = ckpp =  FIG. 1. The three basic types of reaction terms that arise in
2,/f'(0). For any function of type A this value representsdifferent applications.
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It is known [14] that for a function of type A, B, or
C there exists a strictly decreasing frant= g(x — cr)
joining u = 1 tou = 0 for somec > 0. The front satis-
fiesg,, + cq, + f(g) =0, liMu;—0o = 1, liMu,—0c =
0, wherez = x — ct.
since the front is monotonic, we defipdq) = —dq/dz,
where the minus sign is included so theis positive. One
finds that the monotonic fronts are solutions of

r@) L = ep) + f@ =0, ()
q

with

p(0)=0, p(1)=0, p>0 in(01). (2b)

The derivation follows in a simple way from Eq. (2a).

Let ¢ be any positive function in (0,1) such that=
—dg/dq > 0. Multiplying Eqg. (2a) byg(g) and integrat-
ing betweerny = 0 andg = 1 we obtain, after integration
by parts,

1 1 1
|
[fgdq=6[ pgdq—[ Ehpzdm
0 0 0

However, since, p, g, andh are positive, for fixed;, the
function

®3)

1
¢(p) = cpg — 3hp2
has a maximum at

g

Pmax = € h (4)

SO

2
d(p) =c? ﬁ

It follows then that
Jofgdq

Jo(8>/h)dg

This lower bound on the speed is valid for afifor which

at each value of.

2 >

(5)

a monotonic front exists. To show that this is a variational

principle we must show that there exists a functpmt

which the equality holds. From Eg. (4) we see that the

case of equality is attained whensatisfies the ordinary
differential equation

8
C < =
h g’

i
|
o

The maximizingg, obtained by integrating this equation,

is given by

(6)

with 0 < go < 1. Evidently ¢ is positive, monotonic
decreasing, and moreovgfl) = 0. Nearg = 0, g di-
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Following the usual procedure,

verges. We must ensure that the integrals in Eq. (5) exist.
To verify this we recall [14] that in the three cases, A, B,
and C, the front approachegs= 0 exponentially. There-
fore, nearg = 0,

p~ %[c + Ve —4f'(0)]g = mgq.

Thus, from Eq. (6) we obtain

N 1
8(q) ~ W
nearqg = 0 and /¢ and §2/h diverge at most ag' =</,
Hence, the integrals in Eq. (5) existrif/c > 1/2. This
condition is always satisfied whef{(0) < 0, that is, in
cases B and C. In case A this condition is satisfied provided
thatc > 24/f/(0).

Therefore, in cases B and C, and in case A (whenever
¢ > cxpp) We have shown that the asymptotic speed of
the front is given by

. _ma>< _ Jofgdg )
Jo(—8%/¢" dg

where the maximum is taken over all positive decreasing
functions g in (0, 1) for which the integrals exist. The
maximum is attained whes = g.

In case A, if the right side of Eq, (5) does not exceed the
linear valuec? = cpp = 45'(0) for anyg, one can show
that the supremum s{® [, fg dq/ [o(—g2/g') dq]yields
precisely the value2 = ckpp = 4f7(0). This fact can
be seen by choosing the maximizing sequepgéy) =
a2 — a)u®?with0 < a < 1inthe limita — 0.

As an example we may apply the above result to the
Nagumo equation which corresponds to a reaction term of
the form

(7)

fw) =ull —u)(u—a) with0<a<1/2.

This reaction term is of the bistable type. For this
equation the solution to Eq. (2a) is known; it is given by
— g) and the speed is given by

1
c=ﬁ—a\/§.

To exhibit in this solvable case that the exact speed can
be obtained from the variational principle choose as a trial

function
1 _ 1-2a
o = (L29) ™
q

The integrals can be performed easily. We obtain

p(q) = Fq(1

I'l + 2a)I'3 — 2a)
(1 —2a)'(4)

1
[ (—g*/¢)dq =
0
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