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Speed of Fronts of the Reaction-Diffusion Equation
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We study the speed of propagation of fronts for the scalar reaction-diffusion equationut 
uxx 1 fsud with fs0d  fs1d  0. We give a new integral variational principle for the speed
fronts joining the stateu  1 to u  0. No assumptions are made on the reaction termfsud other than
those needed to guarantee the existence of the front. Therefore our results apply to the classic
f . 0 in s0, 1d, to the bistable case, and to cases in whichf has more than one internal zero ins0, 1d.
[S0031-9007(96)00796-X]
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The one dimensional reaction diffusion equation

ut  uxx 1 fsud with fs0d  fs1d  0 , (1)

with fsud [ C1f0, 1g, has been the subject of much stu
as it models diverse phenomena in biology, populat
dynamics, chemical physics, combustion, and others
5]. Not only is it in itself of interest, but based on th
rigorous results available for this equation diverse meth
applicable to pattern forming systems have been develo
[6–9]. In applications, the reaction termfsud obeys
additional requirements depending on the phenome
being modeled. Three types of nonlinearities appea
be generic, and are shown in Fig. 1. Type A, for wh
f . 0 in s0, 1d is the class to which the classical ca
of Fisher [10] and Kolmogorov, Petrovskii, and Piskun
(KPP) [11] belongs. Type B, usually referred to as
combustion case, satisfiesf  0 on s0, ad and f . 0
on sa, 1d, while finally, type C, called the bistable cas
satisfiesfsud , 0 for u in s0, ad, f . 0 on sa, 1d withR1

0 fsud du . 0. More general cases forf, namely cases
in which f has more than one internal zero, have also b
studied [12,13].

The time evolution of an initial conditionusx, 0d has
been studied for all the cases mentioned. It was pro
[14] that for suitable initial conditions the disturban
evolves into a monotonic traveling frontu  qsx 2 ctd
joining the stable stateu  1 to u  0. In case A there
is a continuum of values ofc for which a monotonic front
exists, and the system evolves into the front of minim
speed. In cases B and C there is a single isolated valu
the speed for which the front exists. In these last two ca
there are threshold effects, and necessary conditions fo
evolution of the system into the front have been establis
as well [12,14]. The same is true for reaction terms w
more than one internal zero [12]. The problem wh
interests us here is the determination of the asympt
speed of the front. There have been numerous studie
this problem. A very complete review is given in [4
For reaction terms of type A which in addition satis
f 0s0d . fsudyu the speed is given by [11]c  cKPP 
2
p

f 0s0d. For any function of type A this value represen
0031-9007y96y77(6)y1171(3)$10.00
y
ion
[1–
e
ods
ped

non
to

ch
se
v

he

e,

een

ved
e

al
e of
ses
r the
hed
ith
ch
otic
s of
].
fy

ts

a lower bound on its speed [14]. Another reaction te
of type A, that of a functionf approaching a Dirac delta
function atu  1 was studied in relation to combustio
phenomena by Zeldovich and Frank-Kamenetskii. Th
showed [15] that in that case the speed tends tocZFK q

2
R1

0 fsud du. For an arbitrary reaction functionfsud
a local variational principle of the minimax type exis
[4,16]. For reaction terms of types A and B we have sho
that an integral variational principle of the Rayleigh-Ri
type exists [17,18]. Recently an interesting conjectu
[19] has been put forward for a restricted class of react
functions.

The purpose of this Letter is to show that the speed
the front joining the stateu  1 to u  0 derives from
an integral variational principle without any restriction o
f other than those needed to guarantee the existenc
the front. The derivation follows an approach similar
the one used to obtain the principle valid only for positiv
reaction terms. This new principle, however, which
valid for all cases, is not related, nor equivalent, to t
previous one.

FIG. 1. The three basic types of reaction terms that arise
different applications.
© 1996 The American Physical Society 1171
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It is known [14] that for a function of type A, B, or
C there exists a strictly decreasing frontu  qsx 2 ctd
joining u  1 to u  0 for somec . 0. The front satis-
fies qzz 1 cqz 1 fsqd  0, lim uz!2`  1, lim uz!` 
0, where z  x 2 ct. Following the usual procedure
since the front is monotonic, we definepsqd  2dqydz,
where the minus sign is included so thatp is positive. One
finds that the monotonic fronts are solutions of

psqd
dp
dq

2 cpsqd 1 fsqd  0 , (2a)

with

ps0d  0, ps1d  0, p . 0 in s0, 1d . (2b)

The derivation follows in a simple way from Eq. (2a
Let g be any positive function in (0,1) such thath 
2dgydq . 0. Multiplying Eq. (2a) bygsqd and integrat-
ing betweenq  0 andq  1 we obtain, after integration
by parts,Z 1

0
fg dq  c

Z 1

0
pg dq 2

Z 1

0

1
2

hp2 dq . (3)

However, sincec, p, g, andh are positive, for fixedq, the
function

fspd  cpg 2
1
2

hp2

has a maximum at

pmax  c
g
h

(4)

so

fspd # c2 g2

2h

at each value ofq. It follows then that

c2 $ 2

R1
0 fg dqR1

0sg2yhd dq
. (5)

This lower bound on the speed is valid for anyf for which
a monotonic front exists. To show that this is a variation
principle we must show that there exists a functiong at
which the equality holds. From Eq. (4) we see that t
case of equality is attained whenĝ satisfies the ordinary
differential equation

c
ĝ

ĥ
; 2c

ĝ
ĝ0

 p .

The maximizingĝ, obtained by integrating this equation
is given by

ĝ  exp

√
2

Z q

q0

c
p

dq

!
, (6)

with 0 , q0 , 1. Evidently ĝ is positive, monotonic
decreasing, and moreoverĝs1d  0. Near q  0, ĝ di-
1172
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verges. We must ensure that the integrals in Eq. (5) ex
To verify this we recall [14] that in the three cases, A,
and C, the front approachesq  0 exponentially. There-
fore, nearq  0,

p ,
1
2

fc 1
p

c2 2 4f 0s0d gq ; mq .

Thus, from Eq. (6) we obtain

ĝsqd ,
1

qcym

nearq  0 andfĝ and ĝ2yĥ diverge at most asq12cym.
Hence, the integrals in Eq. (5) exist ifmyc . 1y2. This
condition is always satisfied whenf 0s0d # 0, that is, in
cases B and C. In case A this condition is satisfied provid
thatc . 2

p
f 0s0d.

Therefore, in cases B and C, and in case A (whene
c . cKPP ) we have shown that the asymptotic speed
the front is given by

c2  max

√
2

R1
0 fg dqR1

0s2g2yg0d dq

!
, (7)

where the maximum is taken over all positive decreas
functions g in s0, 1d for which the integrals exist. The
maximum is attained wheng  ĝ.

In case A, if the right side of Eq, (5) does not exceed t
linear valuec2  c2

KPP  4f 0s0d for anyg, one can show
that the supremum supf2

R1
0 fg dqy

R1
0s2g2yg0d dqg yields

precisely the valuec2  c2
KPP  4f 0s0d. This fact can

be seen by choosing the maximizing sequencegasqd 
as2 2 adua22 with 0 , a , 1 in the limit a ! 0.

As an example we may apply the above result to
Nagumo equation which corresponds to a reaction term
the form

fsud  us1 2 ud su 2 ad with 0 , a , 1y2 .

This reaction term is of the bistable type. For th
equation the solution to Eq. (2a) is known; it is given b
psqd 

1
p

2
qs1 2 qd and the speed is given by

c 
1

p
2

2 a
p

2 .

To exhibit in this solvable case that the exact speed
be obtained from the variational principle choose as a t
function

gsqd 

µ
1 2 q

q

∂122a

.

The integrals can be performed easily. We obtainZ 1

0
s2g2yg0d dq 

Gs1 1 2adGs3 2 2ad
s1 2 2adGs4d
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c.
and Z 1

0
fg dq 

s1 2 2adGs1 1 2adGs3 2 2ad
4Gs4d

so that the lower bound forc2  s1 2 2ad2y2 which is
the exact value. For other nonsolvable cases, it is
simple matter to obtain accurate values for the speed us
standard variational techniques.

The calculations performed above for the reactio
diffusion equation (1) can be extended in an analogo
way to the density dependent diffusion equation

ut  ffsudgxx 1 fsud, with f0 . 0 in s0, 1d . (8)

For traveling decreasing monotonic frontsu  qsx 2 ctd
we definepsud  2f0suduz and proceeding as before w
obtain

c2 $ 2

R1
0 ff0g dqR1
0sg2yhd dq

. (9)

For the density dependent reaction-diffusion equati
the existence of monotonic fronts has been establish
for particular cases of functionsf and f ([20,21] and
references therein). For all these cases the bound (9)
be written as a variational principle analogous to (7).

In this Letter we have dealt with a single scalar reactio
diffusion equation. A minimal speed solution is also th
relevant asymptotic state for certain classes of systems
reaction-diffusion equations [22–25]. The existence
a variational characterization of the speed in those ca
remains to be studied.

This work has been partially supported by Fondec
Project No. 1960450.
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