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Variational principle for limit cycles of the Rayleigh –van der Pol equation

R. D. Benguria and M. C. Depassier
Facultad de Fı´sica, Pontificia Universidad Cato´lica de Chile, Casilla 306, Santiago 22, Chile

~Received 2 October 1998!

We show that the amplitude of the limit cycle of Rayleigh’s equation can be obtained from a variational
principle. We use this principle to reobtain the asymptotic values for the period and amplitude of the Rayleigh
and van der Pol equations. Limit cycles of general Lie´nard systems can also be derived from a variational
principle. @S1063-651X~99!02705-1#

PACS number~s!: 45.05.1x, 47.20.Ky, 02.30.Hq, 02.30.Wd
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I. INTRODUCTION

Limit cycles or self-excited oscillations appear in a wi
class of problems in electronics, biology, astrophysics,
name a few. The first and most studied examples of eq
tions which exhibit limit cycles are the Rayleigh equation

ÿ1nS 1

3
ẏ32 ẏD1y50, ~1!

which was introduced to show the appearance of susta
vibrations in acoustics@1#, and the van der Pol equation@2#

ẍ1n~x221!ẋ1x50, ~2!

derived for a certain electrical circuit. These systems exh
a single periodic solution of period and amplitude depend
on n. It was soon noticed that these two equations are clo
related. Indeed, taking the derivative of Rayleigh’s equat
and calling ẏ5x, we obtain van der Pol’s equation forx.
Therefore, the limit cycles for both equations have the sa
period and the amplitudexmax of the limit cycle of the van
der Pol equation is the maximum value ofẏ. More general
systems of the form

ẍ1n f ~x!ẋ1x50 ~3!

were studied by Lie´nard@3#, who gave conditions onf for the
existence of a unique limit cycle. The conditions for the e
istence and uniqueness of limit cycles for systems of
form ẍ1n f (x) ẋ1g(x)50, or generalized Lie´nard systems,
have also been established@4#. For functionsf (x) which do
not satisfy Liénard’s conditions, the existence, number, a
location of limit cycles is an open problem. For small dep
tures of the Hamiltonian caseẍ1x50 these questions can b
answered by Melnikov’s theory@5,6#. A new, nonperturba-
tive, approach to solving this problem has been propo
recently@7,8#.

In this paper we will be concerned with the Rayleigh–v
der Pol equation. There is a large amount of work on t
equation, both rigorous and numerical. The period and
plitude have been determined mainly by perturbation the
for the small and largen limits. Accurate methods@9# have
been developed to obtain regular series for intermediate
ues ofn. The leading order results in the limitn→0 are the
periodT52p and the amplitude of the limit cycleA52. In
the limit of n→` the period is, in leading order,T53
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22 ln(2) and the amplitude for the van der Pol equation
againA52. Higher order corrections for both the small an
largen @10# limits have been obtained. Detailed results a
additional references on these and other points can be fo
in @10–13#, among other books.

The purpose of this work is to present an alternative
proach by noticing that a variational principle can be form
lated for Rayleigh’s equation and also for general Lie´nard
equations~3!. We derive this variational principle and sho
how to recover from it the period and amplitude in the lim
iting regions of the parametern. By using this variational
principle together with appropriate trial functions one c
obtain the amplitude and the period of the limit cycle f
arbitrary values ofn.

II. VARIATIONAL PRINCIPLE

We shall work on Rayleigh’s equation and derive the a
plitude and period for Rayleigh’s equation. Given the co
nection between the two equations mentioned in the In
duction, one can also obtain the amplitude of the limit cy
for the van der Pol equation. We shall use a method e
ployed previously to obtain variational principles for oth
nonlinear eigenvalue problems@15–17# ~for a review see
@14#!. Due to the symmetry of Rayleigh’s equation, the lim
cycle extends between a minimumxmin52A and a maxi-
mum xmax5A. Moreover, in phase space, if the point (ẏ,y)
belongs to the limit cycle, then the point (2 ẏ,2y) also be-
longs to it. Therefore we may consider the positive upp
half ẏ.0 of the phase plane, where half a period will elap
when going from the points (ẏ50,xmin) to (ẏ50,xmax). Then
the equation for the limit cycle in phase space can be writ
as thenonlinear eigenvalue problem,

p
dp

dy
1nS p3

3
2pD1y50 with p~6A!50 and p.0,

where we have calledp(y)5 ẏ(y). Thenonlinear eigenvalue
is the amplitudeA which appears in the boundary condition
It is convenient to define a new variableu5y/A in terms of
which the equation forp is given by

1

S
p

dp

du
1S p3

3
2pD1Ru50, ~4!

with p(61)50 andp.0.
4889 ©1999 The American Physical Society



pt
e

ta

-

th

e
e

in

ion

of

or

de
p-

na-

its

a

s-

4890 PRE 59R. D. BENGURIA AND M. C. DEPASSIER
Two parameters appear naturally in this problem,R[A/n
andS[nA. In terms of the functionp(u), the period of the
limit cycle is given by

T52AE
21

1 du

p
.

Having written the problem in phase space, we may ada
method to obtain variational principles developed for oth
problems. The method is simple enough that the full de
can be given here. Letg(u) be a positive~continuous, with
continuous derivative! but otherwise arbitrary function. Mul
tiplying Eq. ~4! by g(u) and integrating inu between 0 and
1, we obtain, after integrating by parts and making use of
boundary conditions onp,

RE
21

1

ug~u!du5E
21

1

f„g~u!,p~u!…du, ~5!

where

f„g~u!,p~u!…5gp1
1

2S
p2g82

1

3
gp3

[gS p1
1

2
p2v2

1

3
p3D .

Here we have definedv(u)[g8(u)/„Sg(u)…. At each value
of u we may regardf as a function ofp; sinceg is positive,
f has a single maximum at a positive valuep̂ given by

p̂5
1

2
@v1Av214#. ~6!

Thereforef(g,p)<f(g,p̂). Replacing this in the identity
Eq. ~5!, we obtain

R<
1

12

E
21

1

g~u!F„v~u!…du

E
21

1

ug~u!du

, ~7!

where F(v)52v1(41v2)@v1A41v2 #. Therefore, given
a trial functiong(u) and a value ofS, through Eq.~7! we
obtain a bound onR; the original parametersA and n are
given in terms ofS andR by

A5~RS!1/2 and n5S S

RD 1/2

.

The equality in Eq.~7! will hold whenever the trial function
g(u) is such thatp̂ is exactlyp, the true solution for the limit
cycle. From Eq.~6! we see that this will occur forg5ĝ
satisfying

1

S

g8

g
5v5p2

1

p
,

from which it follows that
a
r
il

e

ĝ~u!5expS SE
21

u

v~ t !dtD 5expFSE
21

u S p2
1

pDdtG , ~8!

which is a nonsingular positive function. Notice that th
minimizing g is uniquely defined modulo a multiplicativ
constant. Our main result is then

R5min
g

1

12

E
21

1

g~u!F„v~u!…du

E
21

1

ug~u!du

, ~9!

where the minimization is over all positive functionsg(u)
~which are continuous and have continuous derivative
@0,1#!. Alternatively, one may expressg andv in terms ofp̂,
and consider the more intuitive functionp̂ as the trial func-
tion. In terms ofp̂ the above results read

R5min
p̂

1

6

E
21

1

eS*21
u [ p̂2~1/p̂!]dt@ p̂313p̂#du

E
21

1

ueS*21
u [ p̂2~1/p̂!]dtdu

.

To avoid confusion between the true solution of the equat
p(u) and the trial functionsp̂(u), we will continue with the
use ofg(u) ~and alsov), the original trial function. Notice
also that we shall be interested in the maximum value

v(u), which gives the maximum ofp̂, which in turn is the
amplitude of the limit cycle of the van der Pol equation. F
each trial functiong we obtain a value ofp̂ and the corre-
sponding approximate period is given by

T'4AE
21

1 du

v1Av214
. ~10!

If we wish to obtain approximate values for the amplitu
and period, we may choose different trial functions and o
timize the bound numerically. Instead, we shall study a
lytically the large and smallS limits to reobtain the known
results in these limits.

III. ASYMPTOTIC RESULTS

In this section we reobtain the known results in the lim
of small and largen. Notice that the variational principle~9!
is of the form R5min I@g,g8#/J@g,g8# with I
[*21

1 g(u)F„v(u)…du/12 andJ[*21
1 ug(u)du. In order to

minimize the above quotient, it is better to introduce
Lagrange multiplier, and extremize instead the quantity

I ~g,g8!2lJ~g,g8!5E
21

1

L~w,w8,u!du,

wherel is a Lagrange multiplier and where, rather than u
ing variablesg andg8, we have introduced the variables

w~u!5E
21

u

v~s!ds and w8~u!5v~u!.



,

a

r,
ner

e

at
g

ng
the
le.

PRE 59 4891VARIATIONAL PRINCIPLE FOR LIMIT CYCLES OF . . .
The Euler-Lagrange equation

d

dt S ]L

]w8
D 2

]L

]w
50,

for this problem, is

1

S
F9~v !v81vF8~v !2F~v !1lu50 ~11!

or, more explicitly,

3

S

d

du
@v21vAv214#12v312~v222!Av2141lu50.

~12!

This equation forv(u) written in terms ofp is, as expected
the original Eq.~4! in phase space withR5l/12.

A. Small S limit

Let us consider first the limit of smallS. In order to do
this, we first obtain the approximate solutionv(u) of Eq.
~12! for small S, which will depend onl.

For smallS, Eq. ~12! for v becomes

3

S

d

du
@v21vAv214#1lu50

which can be integrated to obtain

v21vAv2141
lS

6
u25C,

whereC is a constant. Noticing that the above equation c
be written as 2p̂2221lSu2/65C and that the boundary
conditions on p̂ are p̂(61)50, evaluating atu51 ~or
21) we obtain the value for the constantC5221lS/6.
Defining d5lS/12 we have that for smallS

v21vAv21412d~u221!1250,

and finally

v~u!5Ad~12u2!2
1

Ad~12u2!
. ~13!

Thus, for smallS in leading order we have

I 5
1

12E21

1

expS SE
21

u

v~ t !dtDF„v~u!…du

'
1

12E21

1

F„v~u!…du

and

J5E
21

1

expS SE
21

u

v~ t !dtD u du'SE
21

1

uE
21

u

v~ t !dt.

Using the expression~13! for v(u) we obtain
n

I 5
3p

4
Ad~41d!, J5

3pS

4Ad
~3d24!,

so that from Eq.~7!

R<
1

S

d~41d!

3d24
. ~14!

The right side of Eq.~14! is minimized atd54, leading to
the approximationR'4/S for small values ofS. Therefore,

A5~RS!1/2'2,

which is the correct result in the smallS limit. The period,
evaluated from Eq.~10!, with v(u) given by Eq.~13!, is T
52p.

B. Large S limit

Let us examine now the limit of largeS. For largeS, we
obtain from Eq.~12!

lu522v312~22v2!Av214. ~15!

To fix the value ofl we could proceed as above. Howeve
the same results can be obtained in a more intuitive man
which we develop here. The functionlu(v) is plotted in Fig.
1. Its maximum occurs atv50 and its value is 8. Since th
maximum value ofu is 1 ~recall that with our choice of
variablesu ranges from21 to 1! we must havel58. With
this choice forl, the maximum value forv which occurs at
u521 is 3/2. We have then our first conclusion, namely th
the maximum ofv at largeS is 3/2 and the correspondin
maximum forp is (vmax1Avmax

2 14)/252. This maximum
for p of the Rayleigh equation corresponds to the limiti
amplitude of the van der Pol equation. The amplitude for
Rayleigh equation can be read from the variational princip
For large values ofS the functionĝ(u) given by Eq.~8! is
highly peaked at the maximum of*21

u v(t)dt, i.e., atu51
~since in this casev.0). Therefore, forS large, from Eq.~9!
we obtain

R'
1

12
F@v~1!#5

1

12
F@0#5

2

3
,

FIG. 1. Graph of the functionlu(v).
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and the asymptotic behavior for the amplitude is

A5
2

3
n. ~16!

In Fig. 2 we show the results of the numerical integration
Rayleigh’s equation where we verify this asymptotic beh
ior. The period can be calculated from Eq.~10!. In fact, by
changing the independent variable fromu to v, and by using
Eq. ~15!, we obtain

T'4AE
3/2

0 1

v1Av214

du

dv
dv54AS 9

8
2

3

4
arcsinh~3/4! D .

~17!

Using Eq.~16! in Eq. ~17! we finally obtain

T5@322 arcsinh~3/4!#n5~322 ln2!n

which is the correct leading order for the period for largen.
The two functionsv(u) which we have obtained as lim

iting values may also be used as convenient trial function
obtain numerical bounds onR. In Fig. 3 we show the bound
obtained using as a trial function the smallS approximation
for v(u). With this, the simplest trial function, we obtain a
n54 an error of less than 1.7%. Improvements of the ma
mum value ofp, or equivalently on the amplitude of the va
der Pol equation, can be obtained only by improving the t
function.

IV. CONCLUSION

We have shown that the equation satisfied by the li
cycle of Rayleigh’s equation derives from the variation

FIG. 2. Numerical results for the amplitude of the Raylei
equation as a function ofn. The asymptotic behaviorA→2n/3 can
be noticed here.
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principle Eq.~9! which enables one to obtain the amplitud
in principle, with any desired accuracy. Once sufficient a
curacy is obtained, the period and amplitude for the van
Pol equation follow from it. We have reobtained the limitin
values for small and large deviations from the linear probl
analytically. Our purpose in this work has been to show
existence of the variational principle, and the method of de
vation. It is clear that a variational principle can also
formulated for Liénard systems of the form given in Eq.~3!.
The condition for the existence of a unique limit cycle a
that f is even, F(x)5*0

x f (s)ds satisfies F,0 for 0,x
,x0 , F.0 for x.x0 , F is monotone increasing forx.x0,
andF→` asx→`. These properties guarantee that the lim
cycle of the associated equationÿ1F( ẏ)1y50 ~obtained
calling x5 ẏ and integrating! can be derived from a varia
tional principle as well.

Several questions remain to be answered. First, for o
types of functionsf the equation may possess more than o
limit cycle. It is direct to show that the phase space equat
for the limit cycles ofÿ1F( ẏ)1y50, for any polynomial
F, can be derived from a variational principle. This mea
that all the limit cycles correspond to an extremum of a c
tain functional. It is an open question whether it is possi
to count or estimate the positions of such extrema. Fina
the possibility of extending these results to generaliz
Liénard systems of the formẍ1 f (x) ẋ1g(x)50 is another
problem that remains open.
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FIG. 3. Bounds on the amplitude of the limit cycle of the Ra
leigh equation obtained with a simple trial function.
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