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Variational principle for limit cycles of the Rayleigh —van der Pol equation
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We show that the amplitude of the limit cycle of Rayleigh’s equation can be obtained from a variational
principle. We use this principle to reobtain the asymptotic values for the period and amplitude of the Rayleigh
and van der Pol equations. Limit cycles of generalnliel systems can also be derived from a variational
principle.[S1063-651X99)02705-1

PACS numbg(s): 45.05:+x, 47.20.Ky, 02.30.Hq, 02.30.Wd

[. INTRODUCTION —21In(2) and the amplitude for the van der Pol equation is
againA=2. Higher order corrections for both the small and
Limit cycles or self-excited oscillations appear in a wide large v [10] limits have been obtained. Detailed results and
class of problems in electronics, biology, astrophysics, tadditional references on these and other points can be found
name a few. The first and most studied examples of equan [10—13, among other books.
tions which exhibit limit cycles are the Rayleigh equation The purpose of this work is to present an alternative ap-
proach by noticing that a variational principle can be formu-
1) lated for Rayleigh’s equation and also for generalniiel
equationg3). We derive this variational principle and show
how to recover from it the period and amplitude in the lim-
which was introduced to show the appearance of Sustainqqng regions of the parameter_ By using this variational
vibrations in acoustickl], and the van der Pol equati¢8]  principle together with appropriate trial functions one can
. ) . obtain the amplitude and the period of the limit cycle for
X+ p(x*=1)x+x=0, (2 arbitrary values of.

derived for a certain electrical circuit. These systems exhibit

a single periodic solution of period and amplitude depending II. VARIATIONAL PRINCIPLE

onv. It was soon noticed that these two equations are closely \ya shall work on Rayleigh's equation and derive the am-
related. Indged, taking the derivative of Rayleigh'’s equatiorb”tude and period for Rayleigh's equation. Given the con-
and callingy=x, we obtain van der Pol's equation far  nection between the two equations mentioned in the Intro-
Therefore, the limit cycles for both equations have the sam@uction, one can also obtain the amplitude of the limit cycle
period and the amplitudey. of the limit cycle of the van  for the van der Pol equation. We shall use a method em-
der Pol equation is the maximum value ypf More general ployed previously to obtain variational principles for other

Co (1
y+v| 3y -y|+y=0,

systems of the form nonlinear eigenvalue problems5-17 (for a review see
) _ [14]). Due to the symmetry of Rayleigh’s equation, the limit
x+vf(x)x+x=0 (3)  cycle extends between a minimuxg,,=—A and a maxi-

mum X,.,=A. Moreover, in phase space, if the point ¥)

tudi Li h iti ffor th :
were studied by Lieard[3], who gave conditions oftor the _belongs to the limit cycle, then the point-f/,—y) also be-

existence of a unique limit cycle. The conditions for the ex i Theref ider th "
istence and uniqueness of limit cycles for systems of théong_s to it. Therefore we may consider the posﬁwe upper
form X+ v (X)X+g(x)=0, or generalized Lieard systems, half y>0 of the phase plane, where half a period will elapse

have also been establishpt. For functionsf(x) which do ~ When going from the pointsy(=0Xpir) to (y=0Xmad . Then
not satisfy Limard’s conditions, the existence, number, andthe equation for the limit cycle in phase space can be written
location of limit cycles is an open problem. For small depar-as thenonlinear eigenvalue problem

tures of the Hamiltonian caset x=0 these questions can be d

answered by Melnikov's theors,6]. A new, nonperturba- p_p+ v

tive, approach to solving this problem has been proposed dy

recently[7,8]. )
In this paper we will be concerned with the Rayleigh—vanwhere we have called(y) =y(y). Thenonlinear eigenvalue

der Pol equation. There is a large amount of work on thids the amplitudeA which appears in the boundary conditions.

equation, both rigorous and numerical. The period and amH is convenient to define a new variahle=y/A in terms of

plitude have been determined mainly by perturbation theoryvhich the equation fop is given by

for the small and large limits. Accurate methodf9] have

been developed to obtain regular series for intermediate val- 1 dp

ues ofv. The leading order results in the limit—0 are the sPau

period T=27 and the amplitude of the limit cycla=2. In

the limit of v—o the period is, in leading ordelT=3  with p(x1)=0 andp>0.

3

g—P +y=0 with p(=A)=0 and p>0,

pS
+ g—p)—FRu:O, @)
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)

and S=vA. In terms of the functiorp(u), the period of the

Two parameters appear naturally in this probldRsA/v R u u
g(u)=exr( Sf v(t)dt)=ex Sf
limit cycle is given by -1 -1

,
P p

which is a nonsingular positive function. Notice that the

1 du ... X > " L. .
T=2AJ ey minimizing g is uniquely defined modulo a multiplicative
-1p constant. Our main result is then
Having written the problem in phase space, we may adapt a 1 q
method to obtain variational principles developed for other 1 719(“)':(”(”)) u
problems. The method is simple enough that the full detail R=min 7 n , 9
can _be given h_ere_. Leg(u) be a_positiv_e(continuo_us, with 9 j ug(u)du
continuous derivativebut otherwise arbitrary function. Mul- -1

tiplying Eqg. (4) by g(u) and integrating iru between 0 and o . )
1, we obtain, after integrating by parts and making use of th&here the minimization is over all positive functioggu)
boundary conditions op, (which are continuous and have continuous derivative in

[0,1]). Alternatively, one may expregsandv in terms ofp,

Rf ug(u)du=f H(g(u),p(u))du, (5) gnd consider th(f more intuitive functignas the trial func
1 -1 tion. In terms ofp the above results read

where . fl eI 1Ip- (WA B3 4 35 7d

1 1
¢(g(u),p(u))=gp+ 55p*g’ — 39p° 5 6 fl ueS p—(Wpldtg,

— 2 3
=g( P+ 5Pv—3P ) To avoid confusion between the true solution of the equation

p(u) and the trial functiong(u), we will continue with the
Here we have defined(u)=g’(u)/(Sg(u)). At each value use ofg(u) (and alsov), the original trial function. Notice
of u we may regardp as a function of; sinceg is positive, also that we shall be interested in the maximum value of

¢ has a single maximum at a positive valﬁegiven by v(u), which gives the maximum qT) which in turn is the
amplitude of the limit cycle of the van der Pol equation. For
~ 1 . ) , N
= To+ Jo21 4l 6 each trial functiong we obtain a value op and the corre-
P Z[U v ] ®) sponding approximate period is given by
Therefore ¢(g,p)< ¢(g,p). Replacing this in the identity 1 du
Eq. (5), we obtain T“4Af_l T (10)
fl g(u)F(v(u))du If we wish to obtain approximate values for the amplitude
_ 1) - and period, we may choose different trial functions and op-
R< ' (7) timize the bound numerically. Instead, we shall study ana-

12
f ug(u)du lytically the large and smal§ limits to reobtain the known
-t results in these limits.

where F(v)=2v + (4+v?)[v+V4+0v?]. Therefore, given

a trial functiong(u) and a value ofS through Eq.(7) we . ASYMPTOTIC RESULTS

obtain a bound orR; the original parameteré and v are In this section we reobtain the known results in the limits
given in terms ofSandR by of small and largev. Notice that the variational principk®)
12 is . of the form R=min|[g1],g’]/J[g,g’] with |
A=(RS¥ and V:(_) _ =% 19(U)F (0(u))dw12 andJ=[* ug(u)du. In order to

R minimize the above quotient, it is better to introduce a

o . ] ) Lagrange multiplier, and extremize instead the quantity
The equality in Eq(7) will hold whenever the trial function

g(u) is such thaf) is exactlyp, the true solution for the limit

cycle. From Eq.(6) we see that this will occur fog=g
satisfying

1
I(g,g')—u<g,g')=fﬁluw,w',u)du,

wherel is a Lagrange multiplier and where, rather than us-
19’ 1 ing variablesg andg’, we have introduced the variables
2 —p=p-—,
sg TP )
w(u)= s)ds and w'(u)=wv(u).
from which it follows that (W) fflv( ) (W=vW



PRE 59

The Euler-Lagrange equation

d| dL aL 0
dt| gw'| ow
for this problem, is

1
=F"(v)v'+vF'(v)—F(v)+Au=0

s (11)
or, more explicitly,
3d 2 2 3 2 2
gﬁ[v +ov\Vue+4]+2v°+2(v°—2) Vv + 4+ u=0.
(12

This equation fow (u) written in terms ofp is, as expected,
the original Eq.(4) in phase space witR=\/12.

A. Small S limit

Let us consider first the limit of sma#. In order to do
this, we first obtain the approximate solutiorfu) of Eq.
(12) for small' S, which will depend on\.

For smallS, Eq.(12) for v becomes

3d

T 7,2 2 _

Sdu[v +v\v°+4]+Nu=0
which can be integrated to obtain

AS
v2+uvi+a+ FUZ=C,
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FIG. 1. Graph of the functionu(v).

1= 3T Bat ), 3= 22354
4 1 4\/5 1
so that from Eq(7)
1 5(4+0) y
- —.
S 35-4 (14

The right side of Eq(14) is minimized ats=4, leading to
the approximatiorR~4/S for small values ofS. Therefore,

A=(R9¥2~2,

which is the correct result in the smallimit. The period,
evaluated from Eq(10), with v(u) given by Eq.(13), is T

=21.

whereC is a constant. Noticing that the above equation can

be written as P2—2+\SW¥/6=C and that the boundary

conditions onp are p(=1)=0, evaluating atu=1 (or
—1) we obtain the value for the consta@it=—2+\S/6.
Defining 6=\5/12 we have that for smal

v2+u\ul+4+28U%—1)+2=0,

and finally
1
v(u)=\/6(1—u —m. (13)

Thus, for smallSin leading order we have

1 r1 u
= 1), exp( Sj_lu(t)dt) F(v(u))du

11
~1 _1F(v(u))du

and

J= f_ll exp( Sf_ulv(t)dt) u duwsf_lluf_ulv(t)dt.

Using the expressiofiL3) for v(u) we obtain

B. Large S limit

Let us examine now the limit of larg8 For largeS we
obtain from Eq.(12)

AU=—203+2(2—0v?) Jv?+4.

To fix the value ofA we could proceed as above. However,
the same results can be obtained in a more intuitive manner
which we develop here. The functiom(v) is plotted in Fig.

1. Its maximum occurs at=0 and its value is 8. Since the
maximum value ofu is 1 (recall that with our choice of
variablesu ranges from—1 to 1) we must have. =8. With

this choice for\, the maximum value fov which occurs at
u=—1 is 3/2. We have then our first conclusion, namely that
the maximum ofv at largeSis 3/2 and the corresponding
maximum forp is (v maxt \/vm2 ot 4)/2=2. This maximum

for p of the Rayleigh equation corresponds to the limiting
amplitude of the van der Pol equation. The amplitude for the
Rayleigh equation can be read from the variational principle.
For large values o6 the functiong(u) given by Eq.(8) is
highly peaked at the maximum gt ,v(t)dt, i.e., atu=1
(since in this case >0). Therefore, folSlarge, from Eq(9)

we obtain

(15

_ 1 1 2
R~ Flv(1)]= Fl0]=3,
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FIG. 2. Numerical results for the amplitude of the Rayleigh ~ FIG. 3. Bounds on the amplitude of the limit cycle of the Ray-
equation as a function of. The asymptotic behavigk—2»/3 can  leigh equation obtained with a simple trial function.

be noticed here. . . . .
principle Eq.(9) which enables one to obtain the amplitude,

and the asymptotic behavior for the amplitude is in principle, with any desired accuracy. Once sufficient ac-
curacy is obtained, the period and amplitude for the van der

2 Pol equation follow from it. We have reobtained the limiting
A=z (160 values for small and large deviations from the linear problem

analytically. Our purpose in this work has been to show the
In Fig. 2 we show the results of the numerical integration ofexistence of the variational principle, and the method of deri-
Rayleigh’s equation where we verify this asymptotic behav-vation. It is clear that a variational principle can also be
ior. The period can be calculated from H40). In fact, by ~ formulated for Liemard systems of the form given in E®).
changing the independent variable franto v, and by using  The condition for the existence of a unique limit cycle are

Eq. (15), we obtain that f is even, F(x)=[3f(s)ds satisfiesF<0 for 0<x
<Xg, F>0 for x>xg, F is monotone increasing fot>Xxg,
0 1 du 9 3 ) andF— o« asx—oo. These properties guarantee that the limit
T~4A | ———=——-—dv=4A|s— —arcsinti3/4)]|. . : )
320 +\Jp2+4 dv 8 4 cycle of the associated equatignt+F(y)+y=0 (obtained

a7 calling x=y and integrating can be derived from a varia-
. . , . tional principle as well.
Using Eq.(16) in Eq. (17) we finally obtain Several questions remain to be answered. First, for other
T=[3-2 arcsinti3/4)]v=(3-2 In2)» types of funcFion_sf the equation may possess more than one
limit cycle. It is direct to show that the phase space equation

which is the correct leading order for the period for lasge for the limit cycles ofy+F(y)+y=0, for any polynomial
The two functionsy (u) which we have obtained as lim- F, can be derived from a variational principle. This means
iting values may also be used as convenient trial functions tthat all the limit cycles correspond to an extremum of a cer-
obtain numerical bounds dR. In Fig. 3 we show the bound tain functional. It is an open question whether it is possible
obtained using as a trial function the sm@lapproximation to count or estimate the positions of such extrema. Finally,
for v(u). With this, the simplest trial function, we obtain at the possibility of extending these results to generalized
v=4 an error of less than 1.7%. Improvements of the maxi{ iénard systems of the form-+ f(x))'(+ g(x)=0 is another
mum value ofp, or equivalently on the amplitude of the van problem that remains open.
der Pol equation, can be obtained only by improving the trial
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