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Linear and nonlinear marginal stability for fronts of hyperbolic reaction diffusion equations
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We study traveling fronts of equations of the formutt1f(u)ux5uxx1 f (u). A criterion for the transition
from linear to nonlinear marginal stability is established for positive functionsf(u) and for any reaction term
f (u) for which the usual parabolic reaction diffusion equationut5uxx1 f (u) admits a front. As an application,
we treat reaction diffusion systems with transport memory.
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I. INTRODUCTION

Reaction diffusion equations are used to model trans
phenomena in a variety of contexts such as population
namics, transmission lines, flame propagation among oth
The prototype of such equations, for which a thorough
derstanding@1,2# of its properties has been achieved is t
parabolic reaction diffusion equation

ut5uxx1 f ~u! with f ~0!5 f ~1!50, ~1!

where the subscripts denote derivatives. For positive reac
terms f (u), sufficiently localized initial conditions evolve
into a monotonic decaying traveling front joining the stab
u51 to the unstableu50 equilibrium points. For bistable
reaction terms, which satisfyf ,0 in (0,a) and f .0 in
(a,1), with *0

1f .0, it is possible to find initial conditions fo
which the system will evolve into a monotonic decayi
front joining the two stable equilibrium pointsu51 to u
50. In the first case there is a continuum of speeds for wh
there exist monotonic fronts, the system evolves into
front of minimal speed. In the second case there is a uni
speed.

The use of Eq.~1! to model a physical process involve
assumptions on the stochastic process that describes the
tion of the individuals. More specifically, Brownian motio
is assumed@3#. If instead a more realistic process is cons
ered@4#, then, in one spatial dimension, the differential equ
tion that describes the motion is a hyperbolic reaction dif
sion equation of the form

utt1f~u!ut5uxx1 f ~u!. ~2!

It has been shown that, as in the usual reaction diffus
equation, for positivef(u), the hyperbolic equation admit
monotonic decaying fronts of speedc,1 and that the spee
of the front is determined from a related parabolic equat
@5#.

Equations of this form have been studied for particu
cases off(u) obtained assuming specific functions f
memory effects in the diffusion term@6–10#.

For constantf(u) and concavef (u) the stability of the
traveling front has been proven@10#. The asymptotic behav
ior of the front of minimal speed has also been found@10#.
Numerical solutions for positivef indicate that the transition
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from linear to nonlinear marginal stability occurs at the sa
parameter values than for the parabolic equation Eq.~1! @8#.

In systems with exponential transport memory,f(u) is of
the form

f~u!5s2 f 8~u!,

wheres is a parameter. Numerical integration of the part
differential equation shows that for adequate initial con
tions the system evolves into the front of minimal speed. F
this case a variational principle for the speed of the fro
speed was constructed for positive reaction termsf (u); it
was proved that for concave reaction terms, as in the p
bolic equation, linear marginal stability holds@6#.

In this work we construct a variational principle to dete
mine the minimal speed of fronts for any positive functio
f(u) and general reaction terms for which the parabo
equation admits a front. From this principle upper and low
bounds are constructed, which permit thea priori determi-
nation of the transition from linear to nonlinear margin
stability @11,12#. We recover all known results as particul
examples, and construct others that show different type
behavior depending on the explicit functionsf (u) andf(u).
Our main result is the following, consider Eq.~2!, with
f(u).0, and f (u) a reaction term for which fronts of the
parabolic equation exist, as described above. The mini
~or unique, for the bistable case! speed of the fronts joining
the stable to the unstable pointsu51 to u50 is given by

c2

12c2
5supg2a

E
0

1

g„K~u!…f ~u!d u

E
0

1

2g2~u!/g8~u!d u

, ~3!

where

1

a
5E

0

1

f~u!d u ~4!

and

K~u!5aE
0

u

f~u!d u. ~5!
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The supremum is taken over all positive decaying functio
g(u) for which the integrals exist. From this result it follow
that, for positive reaction terms that satisfyf 8(0).0, the
following bound holds:

4
f 8~0!

f2~0!
<

c2

12c2
<4supu

a f ~u!

f~u!K~u!
,

which enables one to characterize functions for which m
ginal stability is valid. The lower bound, the marginal stab
ity value, is that imposed by linear considerations alone.
proved lower bounds valid for all reaction terms are obtain
by direct use of the variational principle.

II. SPEED OF FRONTS

Consider the hyperbolic reaction diffusion equation

utt1f~u!ut5uxx1 f ~u!, ~6!

with

f~u!.0 and f ~0!5 f ~1!50,

where f (u) andf(u)PC1@0,1#. We shall assume thatf be-
longs to the class for which monotonic fronts joining t
equilibrium pointsu51 to u50 exist. The precise condi
tions have been spelled above in the Introduction, and m
precisely elsewhere@2,13#.

We wish to find the minimal~or unique! speed for which
there is a monotonic decaying traveling wave solutionu(z)
5u(x2c t) of Eq. ~6!. The functionu(z) satisfies the equa
tion (12c2)uzz1cf(u)uz1 f (u)50, limuz→2`51,
limuz→`50, uz,0, wherez5x2ct. It is known @5# that
when f .0 there is a continuum of fronts for a range
speedscH,c,1. There is a unique speed in the bistab
case. We may, as usual, consider the trajectory in phase s
by defining p52uz(u). The monotonic decaying fron
obeys

~12c2!p
dp

du
2cf~u!p1 f ~u!50, ~7a!

p~0!5p~1!50, p.0 in ~0,1!. ~7b!

Before going any further we recall the constraints posed
linearization around the fixed points. Linearizing aroundu
50 we find thatp approaches zero asmu, wherem is the
largest root of

~12c2!m22cf~0!m1 f 8~0!50,

that is,

m5
1

2

cf~0!

12c2
1

1

2~12c2!
Ac2f2~0!2

4 f 8~0!

12c2
. ~8!

When f 8(0).0, since it is known that monotonic fronts ex
ist with c2,1, m is real if the term in square brackets
positive, that is, if
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c2

12c2
>

4 f 8~0!

f2~0!
[

cL
2

12cL
2

, ~9!

where we have calledcL the minimal speed derived from
linear theory or, as it is known, linear marginal stabili
value.

When f 8(0)<0, linear theory imposes no constraint o
the speed. Analysis near the equilibrium pointu51 imposes
no constraint on the speed as we assume thatf is positive or
of the bistable-type.

The simplest, but not unique, method to obtain a var
tional characterization of the speed is to introduce a stre
ing of coordinates that reduces the equation to the stan
parabolic reaction diffusion equation@5#. Sincef(u).0, we
may introduce an independent coordinate defined by the
lowing transformation:

y5K~u!, ~10!

with K(u) defined in Eq.~5!. The transformation is invert-
ible, andy varies between 0 and 1. In the new coordinat
Eq. ~7! reads

p~y!
dp

dy
2

c

a~12c2!
p~y!1

f „K21~y!…

a~12c2!f„K21~y!…
50,

~11!

p~0!5p~1!50, p.0 in ~0,1!.

This equation is the equation for fronts of the parabolic eq
tion, of speed

ĉ5
c

a~12c2!

and a reaction term

F~y!5
f „K21~y!…

a~12c2!f„K21~y!…
.

We now check thatF(y) satisfies all the requirements of th
existence of fronts, iff does. Effectively,F(0)5F(1)50 for
f.0 and 12c2.0, sgn(F)5sgn(f ), and

E
0

1

F~y!dy5
1

12c2E0

1

f ~u!du.

So that if f is of the bistable type, for which fronts exist, th
same holds forF if 1 2c2.0, which we know holds. More-
over,

F8~y50!5
1

a2~12c2!
f 8~0!.

We may then apply directly the variational principle fo
fronts of the parabolic reaction diffusion equation@13#. The
minimal speed for the existence of the front is given by
7-2
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ĉ25maxg

2E
0

1

g~y!F~y!dy

E
0

1

@2g2~y!/g8~y!#dy

, ~12!

where the maximum is taken over all positive decaying fu
tionsg in ~0,1! for which the integrals exist. The maximum
attained for

g5ĝ5expS 2E
y0

y ĉ

p~s!
dsD , 0,y0,1, ~13!

provided that F8(0)<0, or, if F8(0).0, when ĉ2

.4F8(0) @13#. Written in terms of the original quantities,c,
f, f, this condition reads

c2

12c2
.

4 f 8~0!

f2~0!
. ~14!

As in the usual parabolic case the maximum is attained
cept at the linear marginal stability value. Here too one c
show that the linear marginal stability value is obtained
taking the supremum instead of the maximum. In terms
the original functionsf andf , Eq. ~12! reads

cH
2

12cH
2

5maxg

2aE
0

1

@g~y! f „K21~y!…/f„K21~y!…#dy

E
0

1

@2g2~y!/g8~y!#dy

.

~15!

Notice that the simpler form Eq.~3! is obtained by changing
to the original independent variableu.

III. CRITERION FOR LINEAR AND NONLINEAR
MARGINAL STABILITY

For the parabolic reaction diffusion equation Eq.~1!, for
f .0, we know that the minimal speed,cPF of the propagat-
ing front is bounded below and above. When these t
bounds coincide, then one can determine the speed un
biguosly. A first estimate comes from the bound@1,2#

2Af 8~0!<cPF<2supuAf ~u!

u
.

When these two bounds coincide linear marginal stabi
holds. It may still hold if these two bounds do not coincid
This can be decided making use of the integral variatio
principle that improves the lower bound@13#, and of a mini-
max variational principle that improves the upper bou
@14#. Combined use of the two permits the exact determi
tion of the speed. For the bistable case, we can obtain
speed making use of the integral variational principle. In t
section the analog of the above results is obtained for
hyperbolic fronts.
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A. Upper bound

We present here a simple derivation of the upper bou
valid both for positive and bistable reaction terms. From E
~15! the following inequality follows:

cH
2

12cH
2

<maxgsup
y

F2a f „K21~y!…

y f„K21~y!…
G

3

E
0

1

y g~y!dy

E
0

1

2g2~y!/g8~y!dy

. ~16!

But, as shown in the Appendix,

E
0

1

yg~y!dy<2E
0

1

2g2~y!/g8~y!dy,

from where we obtain

cH
2

12cH
2

<supyF4a f „K21~y!…

yf„K21~y!…
G . ~17!

Going back to the original independent variable, this is

cH
2

12cH
2

<supuF 4a f ~u!

K~u!f~u!G . ~18!

Observe that this upper bound coincides with the linear va
when the supremum occurs atu50.

B. Lower bounds

The lower bounds have already been obtained, one is
linear bound Eq.~9!, and improved lower bounds can b
obtained by choosing particular trial functionsg. Equality, in
the expression below, holds for a certaing:

cH
2

12cH
2

>maxS cL
2

12cL
2

,

2a E
0

1

@g~y! f „K21~y!…/f„K21~y!…#dy

E
0

1

@2g2~y!/g8~y!#dy
D .

~19!

IV. APPLICATIONS

A. Constant f„u…

As a first example consider the casef(u)5f0, a con-
stant. As explained in the Introduction the stability of th
traveling front for this equation has been proven recen
@10#. Numerical investigations have shown that the transit
from linear to nonlinear marginal stability occur at the sam
parameter values as for the parabolic equation with the s
7-3
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reaction term@8#. This last fact follows directly from the
bounds above. For a constantf(u), we obtaina51/f0 and
y5u. Then, the bounds read

4 f 8~0!<
f0

2cH
2

12cH
2

<4supu
f ~u!

u
.

The upper and lower bounds are identical to those for
speed of fronts of the parabolic equation parabolic equat
Eq. ~15! reduces to

f0
2cH

2

12cH
2

5maxg

2E
0

1

g~u! f ~u!du

E
0

1

@2g2~u!/g8~u!#du

5cPF
2 . ~20!

The speed of the front is determined in terms of the spee
the parabolic front with the same reaction term, therefore
transition from linear to nonlinear marginal stability occu
at the same parameter values as for the parabolic case
speed itself, however, is lower than the speed of the fron
the parabolic equation,

cH
2 5

cPF
2

f0
21cPF

2
,cPF

2 . ~21!

B. Suppression of nonlinear marginal stability

As a second example, which shows that substantially
ferent behavior may occur, take the reaction functionf (u)
5u(12u)(11au). The front of minimal speed for the para
bolic equation is given by

cPF52 for 0,a,2, ~22!

cPF5A2

a
1Aa

2
for a.2. ~23!

If we now consider the hyperbolic equation withf(u)51
1au, the upper and lower bounds coincide and the spee

cH
2

12cH
2

54 for all a.

Effectively we obtain

454 f 8~0!<
cH

2

12cH
2

<4supu
12u

11au/2
54. ~24!

The minimal speed is the linear marginal stability value,
transition from linear to nonlinear marginal stability occu
A significant slowdown of the speed takes place.

C. Time delayed diffusion

In systems with exponential time delayed diffusion t
function f(u) adopts the form
02660
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f~u!5s2 f 8~u!. ~25!

Heres is a parameter that we choose large enough to g
antee f(u).0. For this function a51/s and K(u)5u
2 f (u)/s. The speed of the front was studied for positi
reaction terms, and it was shown that for concave reac
terms marginal stability holds@6#. This can be proved easily
from the present approach. As Eq.~18! shows, linear mar-
ginal stability holds for all positive reaction terms wit
f 8(0).0 provided that the supremum of

B~u!5
4a f ~u!

K~u!f~u!
~26!

occurs onu50, sinceB(0)54 f 8(0)/f2(0) is equal to the
lower bound. To prove then that linear marginal stabil
holds it suffices to show thatB8(u),0 for uP(0,1#. Taking
the derivative we obtain, after some algebra,

B8~u!54
a

K~u! F f f 9

f2~u!
1

sa

f~u!K~u!
h~u!G , ~27!

where h(u)5u f82 f . It follows immediately that for con-
cave reaction termsB8(u),0. For concave termsf 9,0, so
the first term in the square brackets is negative. Andh(u) is
negative for concave functions as well,h(0)50, and h8
5u f9,0. We have recovered the result that for conca
functions withf 8(0).0, linear marginal stability holds, as
does for the parabolic case.

In contrast to the case of constantf, the transition from
linear to nonlinear marginal stability occurs at different p
rameter values than it does for the parabolic equation w
the same reaction term. To see this, consider again the r
tion term f (u)5u(12u)(11au) as in Sec. IV B. In the
parabolic equation transition from linear to nonlinear m
ginal stability occurs ata52. Choose heres52 that guar-
anteesf.0 for 0,a,(51A21)/2'4.79. We show in Fig.
1 that the transition from linear to nonlinear marginal stab
ity occurs at a lower value ofa than that for the parabolic
case. For the graph the trial functiong(u)5(12u)7/u1.8 was
used. The dot-dash line shows the lower bound imposed
the linear marginal stability value, the solid line the low
bound from the variational principle. The transition occurs
at a as low as 1.6 at least. The precise transition value can
found by using a better trial function. The dashed line sho
the upper bound, which guarantees that linear marginal
bility holds for 0,a,1, values for whichf is concave.

D. A bistable reaction term

The variational principle and the bounds obtained abo
hold for positive and bistable reaction systems, no assu
tion on the sign off is made in the derivations. We ma
therefore apply them to a bistable reaction term. We take
an example a case for which the speed of the parabolic f
can be determined exactly,

f ~u!5u~12u!~u2a! for 0,a,1/2. ~28!

The unique value of the speed for which a front exists is
7-4
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cPF5
1

A2
2aA2. ~29!

If f(u)5f0 a constant, the speed of the front is given
Eq. ~21!; and the exact speed is known withcPF given
above.

For this bistable reaction term, withf(u)512 f 8(u),
which is positive for 0,a,1/2, with a simple trial function
g(u)512u, all integrals are elementary, we obtain, usi
Eq. ~15!,

cH
2 >

18249a114a2

88249a114a2
. ~30!

Numerical determination of the speed can be made with
desired accuracy by use of improved trial functions.

We wish to point out that, in recent work, a variation
principle valid only for positive reaction terms has been a
plied to a bistable example@6#. Bistable reaction terms, b
definition, are not positive throughout the whole interval,
the hypothesis of their derivation is violated. We attribute
nearly perfect agreement between the speed of the front
tained from their~nonapplicable! variational principle to that
obtained from direct numerical integration to a coinciden
for the specific trial function chosen. It is not difficult to fin
an acceptable trial function, sharply peaked at the origin,
which the integrand of their variational expression, and
the speed, becomes complex.

FIG. 1. Bounds on the speed of fronts for an example with ti
delayed diffusion. The range of validity of linear marginal stabil
is reduced compared to the parabolic diffusion equation with
same reaction term.
in
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V. CONCLUSION

We have studied the speed of traveling fronts of hyp
bolic reaction diffusion equations~6! for reaction terms for
which the parabolic reaction diffusion equation~1! admits
fronts. A variational principle for the speed of the fronts h
been obtained for a wide class of systems. Explicit upper
lower bounds, obtained from the variational expression all
one to characterize sytems for which marginal stabi
holds. Depending on the nonlinearities of the functionf(u)
the range of validity of linear marginal stability, can be i
creased or decreased, compared to the corresponding r
for a parabolic equation with the same reaction term. T
initial value problem for the hyperbolic reaction diffusio
has been solved@10# in a particular case. Numerical solution
in more general situations indicate that the system evo
for some initial conditions to the front of minimal speed. It
for these cases that the present results are relevant.
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APPENDIX

Let g(y) be a positive decaying function, which satisfi
g(1)50, and callh(y)52g8(y), so thath.0. Then

F E
0

1

yg~y!duG2

5F E
0

1S g

Ah
D ~yAh!duG 2

<E
0

1g2~y!

h~y!
dyE

0

1

y2h~y!dy,

where we used Schwarz’s inequality. The second integra
the right side is, integrating by parts,

E
0

1

y2h~y!dy5E
0

1

y2@2g8~y!#dy52E
0

1

yg~y!dy,

where we used the fact thatg diverges aty50 slower than
(1/y2) ~this is equivalent tom/c.1/2) and thatg(1)50,
which can be seen from Eq.~13!. Replacing this in the in-
equality above we have the desired result,

E
0

1

yg~y!dy<2E
0

1

g2~y!/h~y!dy.

e

e

n
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