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Counterexample to a conjecture of Goriely for the speed of fronts
of the reaction-diffusion equation
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In a recent paper, GorielpA. Goriely, Phys. Rev. Lett75, 2047 (1999] considers the one-dimensional
scalar reaction-diffusion equatian=u,,+ f(u), with a polynomial reaction ternmi(u), and conjectures the
existence of a relation between a global resonance of the Hamiltonian sygterfi(u) =0 and the asymptotic
speed of propagation of fronts of the reaction-diffusion equation. Based on this conjecture an explicit expres-
sion for the speed of the front is given. We give a counterexample to this conjecture and present evidence
indicative that it holds only for a particular class of exactly solvable problé8k063-651X97)11402-1

PACS numbe(s): 82.40.Ck, 47.10+g, 03.40.Kf, 02.30.Hq

The one-dimensional scalar reaction-diffusion equation knowledge of the heteroclinic orbit of the Hamiltonian sys-
temu,,+ f(u)=0. This property of these solvable cases had
U= Uyy - f(U), (1) not been observed before. In this Brief Report we show by
, ) means of a counterexample that this conjecture is not true, in
with f(0)=f(u,)=0 has been the subject of much study, general, for the above class of polynomial reaction terms. In

not only because it models different phenomgha3], but  5ger to assess its validity we consider simple reaction terms
also because it is the simplest reaction-diffusion equation fogs the formf(u)=wu+u"—u™ and study the neighborhood

which rigorous results can be obtain@-11]. Depending on o the Hamiltonian case. Comparison of results obtained di-

the situation being considered the reaction té(m) satisfies  rgctly from the equation differ from those obtained from Go-
additional properties. It has been shown for different classegely's conjecture indicating that the conjecture does not hold
of reaction terms that suitable initial conditions(x,0) except for the special case=2n—1.

evolve in time into a monotonic front joining the state  For the sake of clarity we state the conjecture here. The
u=u, to u=0. The asymptotic speed at which the front yniecture makes use of the fact that the front approaches the
travels is the minimal speed for which a traveling monOton'Cequilibrium stateu=0 as &-Z a well established fact, and
fro_nt u(z)=u(x—ct) exists_[5,7]. Tra\_/eling fronts are a so- gpnroaches the equilibrium poiot=u, asu=u, —Le"+?,
luton ~ of the ordinary differential  equation an assumption which is not always satisfied. Then the global
u,,+cu,+f(u)=0. In the present case we shall be CON-resonance, defined as

cerned with two types of reaction terms, the classical case

f>0 in (Ou,) with f'(0)>0 and the bistable cafe<0 in S=—7y4IN_ ©)]

. . u, ’
(02), =0 1 402 v 150 a1 )< 101 s coponrn 10 conian, o el cis of
which monotonic fronts exist. The system evolves into thelr.lomlal reaction terms, at _aII values _pffor which the non-
Font of speec. It itable case hee i a uniue e 1o XL Eaphclt eoressons re krour for e
isolated value of the spe or which a monotonic front - ; ’
exists, the system evolves into this front. The problem is totigasnpgg dcig:#lt?éegb?;i?]?é p?hn;}éﬁggﬁghag?)lgﬁﬁ {/(v)ﬂgruelailtfg;n
determine the speed of propagation of the front. In the ClaSBe calculated. and that is .the point at whick 0 and the
sical case, if in additiorf’ (0)>f(u)/u the speed of propa- i is H ’ iItoni Th ' i e O f
gationc* is the so called linear or Kolmogorov-Petrovsky- system IS Hamilionian. There IS a unique vajue-9 for
Piskunov(KPP) valuecy pp=2F(0) [4]. In the other cases which such a front existéwe shall label it asu, and the

(as well as in the bistable cgsthere exist variational prin- corresponding equilibrium point asy), and therefore the

ciples, both local and integral, from which the speed can b%c;zeed is completely determined. The speed is conjectured to

calculated with any desired accuracy for arbitrafy

[3,6,10,11. wo?—1'(u,)
In a recent papdrl2] Goriely proposes a new method for Cyor= i , (4
the determination of the speed. Based on an observed prop- V=814 [ (uy)+du]

erty of some exactly solvable cases, namely, reaction terms ,
of the formf(u) = wu+ »ru"—u2""1, he conjectures that for with a constant value fof. Below we give a counterexample

polynomial reaction terms of the form to this conjecture. The main ingredient in constructing a
counterexample is to observe that the expression for the
f(u)=pu+g(u), (2)  speed(4) cannot hold if|f'(u.)| is sufficiently small since

the denominator becomes complex. Moreover, for a general
whereg(0)=g’(0)=0 and with the polynomiad) indepen-  polynomial reaction term, ag is varied, zeroes of the func-
dent of u, the speed of the front can be calculated from thetion f(u) may appear or disappear leading to discontinuities
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FIG. 1. Graph of the reaction terth and the corresponding  FIG. 2. Graph of the reaction term at different valueuofThe
scaled potential at the value pf for which the speed of the front yajue of the stable point increases wjthuntil w reaches 1/3. A
vanishes and the system is Hamiltonian. discontinuous jump in the stable point occurs at that value.

in f'(uy,) but not to discontinuities in the speed. We con-
sider simpler reaction terms of the form
f(u)=puu+u"—u™ with n<m. In this case the smallest
positive zerou, varies continuously withu and does not
disappear ag increases. In order to assess the validity of th
conjecture we calculate the derivatige/du at uy. The
derivative obtained directly from the equation differs from
the one obtained using Goriely’s expression except in th
solvable casen=2n—1. This is strongly indicative that the
conjecture states a property of these particular systems.
Consider the reaction termf(u)=uu+2u’—7u®
+2y4—2u®. This is of the formf(u)=puu+g(u) where
the polynomialg(u) =2u?—7u®+ 20u*/3—2u® satisfies the

that even though the value af. is discontinuous, the speed
is a continuous function of.. The solid line shows the nu-
merical results and the dotted-dashed line corresponds to the
linear or KPP value 2u. The dashed line is the speed pre-
Cdicted by the conjecture Eq4) with §=0.865558. The
value cg,, gives a good approximation near; (where it is
exact by construction it departs from the correct value at
?arger,u and predicts erroneously the transition to the KPP
regime. Asu approaches 1/3 the valug,,, is no longer
applicable as it predicts a complex value for the speed.
Above u=1/3 the value predicted by,,, is well above the
observed value. In conclusion, from the numerical integra-
d ; o tion it follows that for the reaction term that we have con-
propertiesg(0)=g (0).:0 and is |ndepender_1t qﬁ as e sidered the conjecture is not valid aidis not a constant
guested by the conjecture. For the Hamiltonian SySte”éIong the curvec(u). Therefore we have calculated the
Uz + pu+2u?—7ud+ Pu*—2u°=0 a heteroclinic orbit yalue of 5 along the curve. Once the speed is obtained nu-
joining two equilibrium points exists at the value merically the value o is then computed from E¢3) which

u=up=—0.153897. In Fig. 1 the reaction terf{u) is can be expressed §%2]
shown together with théscaled potential. It is clear that a

heteroclinic  solution joining the point u=0 to 5 g

u, =up=0.262 156 exists. In this case the resonafiaean 5o _CTNC —4f'(uy) ®)
be calculated. Its value is given byéd=4, c+/cZ—4f'(0)

=Jf"(up)/ up=0.865 558.

Let us now consider the propagating fronts which are a

2.4
solution of u,,+cu,+ uu+2u?—7u®+ 2Lu*—2u°=0. Be- sl -
fore giving the results of the numerical and analytical calcu- 20 7

Cgor -

lations, we show the plot of the functidnat several values
of w, which will make clear the numerical and analytical
results that follow. Asu increases the equilibrium point
u, increases until ajw=1/3 it reaches the valua =1,
wheref’=0. Above this value ojx there is a discontinuous
jump inu,, the front joins the origiru=0 to a new fixed
point which corresponds to a different root of the polynomial
f(u). In Fig. 2 we show the functiof at different values of
. At u=1/3 the fixed pointu,=1 and the derivative
f'(uy)=0. At ©=0.4, we see that the value af, is now
the new root off which did not exist at low values qi.

First we describe the results of the numerical integrations  F|G. 3. Graph of the speed obtained from the numerical integra-
of the initial value problem for Eq(1) with sufficiently lo-  tion of the initial value problem. The speed of the front is a con-
calized initial value perturbations(x,0). In Fig. 3 we show tinuous function ofu. In the range ofx shown the speed is greater
the asymptotic speed of the front as a functionuofWe see than the linear or KPP value.




55 BRIEF REPORTS 3703

o0 u
181 . cf ugdz=J “f(u)du, (6)
161 . - 0
+
14} o ¥
12| L where we have made use of the fact that for the front
Lol . u’ <0, so thatu can be used as the independent variable in
© 08| F . the term involving the reactioh Sincef and, hencey ., and
’ ToEa, ) - ¢ depend oru, taking the derivative with respect jo of Eq.
061 *a (6) and evaluating af.;, we obtain
04 &,
02 &
N R T de|  Jo'(aflom)du -
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FIG. 4. Value of the resonancg as a function ofu obtained
from the numerical integrations. where we have used that=0 at u=u, and that

f(u,)=0. Since we will consider terms of the form
f(u)=uu+g(u), the integral in the numerator can be done,
. . it yields ui/Z. The integral in the denominator can be ex-
p= pp it adopts the analytically calculated value from the o o in terms of the potentM{u) as follows. The front
Hamiltonian case, decreases to a vale0 at n=1/3, in the Hamiltonian case is the heteroclinic solution of zero

jumps discontinuously to a larger value and increases fron@nergy(see Fig. 1 of the equationu,,+ f(u)=0. Therefore,
there on. This discontinuity is due to the discontinuity in at wp, U22+V(u)=0 and we finally obtain
1 z

u, and of f'(u,). At the value of u=1/3 where
f’(u;)=0 it is evident from Eq(5) that 5=0. As we will

The graph ofé as a function ofy is shown in Fig. 4. At

show below, at this value qf the speed and the asymptotic dc u2/2

behavior for the front can be calculated analytically and it is azl T (8)
found that the front does not approach the fixed point K f ! J=2V(u)du

u, =1 exponentially. We next show that at=1/3 the front #nJO Bh

approachesi=1 asu~1—A/z.

By making use of variational principld$,10] with suit- . . . _
able trial functions, one can show thg/2< c</3/2 so that This expression gives the exact derivativecat w,. ,
the speed is exactly 3/2, which confirms the numerical re; Now we calculate the derivative obtained from Gorielys
sults. The exact value of the speed can be obtainef]ormu"’j1 Eq.(4). Again, usingc=0 at uy, we obtain
analytically from the variational principles due to the

fact that for w=1/3 the derivative of the front can be dCgor 8% —[1—(u /f"(uy))d?g(u,)lgu?] ©
calculated exactly. The derivative of the front as a d = = ; )
function of u, p(u)=-du/dz satisfies the equation B, V=0(1+ O)[F' (uy) + 0]

p(u)p’(u)—cp(u)+f(u)=0 and the exact solution at
w=1/3 is given byp(u)=/2/3u(1—u)2. With this expres- where we used thatu, /du=—u, /f'(u,).
sion for p we may calculate the approach to the We shall now compare the results for simple polynomials.
fixed point u=1. Near u=1, p~+2/3(1-u)? so that First consider the exactly solvable caq@) = wu+u?—us.
du/dz~—(2/3)(1—u)? from where it follows that For this reaction ternu, =2/3, u,=—2/9, f'(u,)=—2/9,
u(z)~1—+(3/2)(1k). We see then that at this poia=0  6=1, andg”(u.,)=—2. We obtain that the exact derivative
since the rate of approach is not exponential but algebraicoincides with that obtained from Goriely’s expression, they
Having seen numerically and analytically th&is not con-  yield 9//2. This was already guaranteed since the conjecture
stant along the solution in this example we conclude that thés based on a property of these exactly solvable systems.
the conjecture does not hold for general polynomials of the Next consider the reaction terffu) = wu+u*—u®. The
form given by Eq.(2). potential is given byV(u)=uu?/2+u%/5—u®6. We find

Here, in order to establish the possible range of validity ofu_ =9/10, u,= — 9310, f'(u.)=—6x9%10%, 5=6 and
the conjecture, we consider a simpler class of polynomialg”(u, )= —6x9%/10%. From the exact expression E8). we
for which the stable pointi, varies continuously withu. obtain
We shall analyze the neighborhood of the Hamiltonian case
by calculating the derivativec/du at w, directly from the
equation and compare it with the result that follows from—
Goriely’s expression for the speed. These two are found el h
differ, except in the special class of exactly solvable systems
f(u)=pu+u"—u?"1, 300

Traveling front solutionsu(x—ct) of Eq. (1) satisfy the T _15+ 30V6+7+/3In(—4+3y2)— 743In(— 1+ 3)
ordinary differential equationu,,+cu,+f(u)=0 from
where it follows, multiplying byu, and integrating, ~6.652 45
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TABLE |. Comparison of the derivativedc/du at = w, for
f(u)=uu+u"—u® for different values oh.
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TABLE Il. Comparison of the derivativedc/du at w= uy, for
f(u)=pu+u"—u’ for different values oh.

n=2 n=3 n=4 n=2 n=3 n=4 n=5 n==6
dc/du (Gon 4,184 4.619 6.575 dc/du (Gor) 3.690 3.630 4.167 5.238 7.681
dc/du (exac) 3.990 4.619 6.652 dc/du (exac) 3.385 3.554 4.167 5.280 7.763

and from Goriely’s expression we obtain

dcCyor ~ 500
du | u, 9(6+6)

~6.575 02,

In conclusion, we have seen by means of a counterexam-
ple that the conjecture put forward, that relates certain prop-
erties of the Hamiltonian syster,,+f(u)=0 with the
speed of the front solution af,,+cu,+ f(u)=0, is not sat-
isfied by general polynomial reaction terrhiu). Consider-

which is close numerically but not exact. The example wedation of a restricted class pf polynomial reaction terms en-
have just considered was presented as one in which the cofPles us to calculate analytically the slope of the speed at the
jecture seemed to hold. There is close numerical agreemeft@miltonian case. It is found that the slope predicted from
in this case, but it is not exact as it should be. We havé>0riely’s formula for the speed coincides with the exact
calculated the slope of the speeduat for reaction terms of Value, only, for the exactly solvable cases, this is strongly
the form f(u) = wu+u"—u™ for different values ofn and indicative that the conjecture is a property of the special

m. The results are shown in Tables | and II. Even though th&YStems where it was observed, and does not hold for more
values are close for some exponents they differ significantigeneral reaction terms.

for others. Exact agreement is found only whar2n—1,
leading us to conclude that the conjecture is a characteristic This work was partially supported by Fondecyt Project

of these special systems.
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