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Counterexample to a conjecture of Goriely for the speed of fronts
of the reaction-diffusion equation

J. Cisternas and M. C. Depassier
Facultad de Fı´sica, Pontificia Universidad Cato´lica de Chile, Casilla 306, Santiago 22, Chile

~Received 5 June 1996!

In a recent paper, Goriely@A. Goriely, Phys. Rev. Lett.75, 2047 ~1995!# considers the one-dimensional
scalar reaction-diffusion equationut5uxx1 f (u), with a polynomial reaction termf (u), and conjectures the
existence of a relation between a global resonance of the Hamiltonian systemuxx1 f (u)50 and the asymptotic
speed of propagation of fronts of the reaction-diffusion equation. Based on this conjecture an explicit expres-
sion for the speed of the front is given. We give a counterexample to this conjecture and present evidence
indicative that it holds only for a particular class of exactly solvable problems.@S1063-651X~97!11402-7#

PACS number~s!: 82.40.Ck, 47.10.1g, 03.40.Kf, 02.30.Hq
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The one-dimensional scalar reaction-diffusion equatio

ut5uxx1 f ~u!, ~1!

with f (0)5 f (u1)50 has been the subject of much stud
not only because it models different phenomena@1–3#, but
also because it is the simplest reaction-diffusion equation
which rigorous results can be obtained@3–11#. Depending on
the situation being considered the reaction termf (u) satisfies
additional properties. It has been shown for different clas
of reaction terms that suitable initial conditionsu(x,0)
evolve in time into a monotonic front joining the sta
u5u1 to u50. The asymptotic speed at which the fro
travels is the minimal speed for which a traveling monoto
front u(z)5u(x2ct) exists@5,7#. Traveling fronts are a so
lution of the ordinary differential equation
uzz1cuz1 f (u)50. In the present case we shall be co
cerned with two types of reaction terms, the classical c
f.0 in (0,u1) with f 8(0).0 and the bistable casef,0 in
(0,a), f.0 in (a,u1) with *0

u1 f.0 and f 8(0),0. In the
classical case there is a continuum of speedsc>c* for
which monotonic fronts exist. The system evolves into
front of speedc* . In the bistable case there is a uniq
isolated value of the speedc* for which a monotonic front
exists, the system evolves into this front. The problem is
determine the speed of propagation of the front. In the c
sical case, if in additionf 8(0). f (u)/u the speed of propa
gationc* is the so called linear or Kolmogorov-Petrovsk
Piskunov~KPP! valuecKPP52Af 8(0) @4#. In the other cases
~as well as in the bistable case! there exist variational prin-
ciples, both local and integral, from which the speed can
calculated with any desired accuracy for arbitraryf
@3,6,10,11#.

In a recent paper@12# Goriely proposes a new method fo
the determination of the speed. Based on an observed p
erty of some exactly solvable cases, namely, reaction te
of the form f (u)5mu1nun2u2n21, he conjectures that fo
polynomial reaction terms of the form

f ~u!5mu1g~u!, ~2!

whereg(0)5g8(0)50 and with the polynomialg indepen-
dent ofm, the speed of the front can be calculated from
551063-651X/97/55~3!/3701~4!/$10.00
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knowledge of the heteroclinic orbit of the Hamiltonian sy
temuzz1 f (u)50. This property of these solvable cases h
not been observed before. In this Brief Report we show
means of a counterexample that this conjecture is not true
general, for the above class of polynomial reaction terms
order to assess its validity we consider simple reaction te
of the form f (u)5mu1un2um and study the neighborhoo
of the Hamiltonian case. Comparison of results obtained
rectly from the equation differ from those obtained from G
riely’s conjecture indicating that the conjecture does not h
except for the special casem52n21.

For the sake of clarity we state the conjecture here. T
conjecture makes use of the fact that the front approaches
equilibrium stateu50 as el2z, a well established fact, an
approaches the equilibrium pointu5u1 asu5u12Leg1z,
an assumption which is not always satisfied. Then the glo
resonance, defined as

d52g1 /l2 ~3!

is conjectured to be a constant, for a general class of p
nomial reaction terms, at all values ofm for which the non-
linear front exists. Explicit expressions are known for t
rates of approachg1 andl2 in terms ofc and f therefore, if
d can be calculated at any point, then an analytic formula
the speed can be obtained. There is such a point where it
be calculated, and that is the point at whichc50 and the
system is Hamiltonian. There is a unique valuem,0 for
which such a front exists~we shall label it asmh and the
corresponding equilibrium point asuh), and therefore the
speed is completely determined. The speed is conjecture
be

cgor5
md22 f 8~u1!

A2d~11d!@ f 8~u1!1dm#
, ~4!

with a constant value ford. Below we give a counterexampl
to this conjecture. The main ingredient in constructing
counterexample is to observe that the expression for
speed~4! cannot hold ifu f 8(u1)u is sufficiently small since
the denominator becomes complex. Moreover, for a gen
polynomial reaction term, asm is varied, zeroes of the func
tion f (u) may appear or disappear leading to discontinuit
3701 © 1997 The American Physical Society
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in f 8(u1) but not to discontinuities in the speed. We co
sider simpler reaction terms of the form
f (u)5mu1un2um with n,m. In this case the smalles
positive zerou1 varies continuously withm and does not
disappear asm increases. In order to assess the validity of
conjecture we calculate the derivativedc/dm at mH . The
derivative obtained directly from the equation differs fro
the one obtained using Goriely’s expression except in
solvable casem52n21. This is strongly indicative that the
conjecture states a property of these particular systems.

Consider the reaction term f (u)5mu12u227u3

120
3 u

422u5. This is of the form f (u)5mu1g(u) where
the polynomialg(u)52u227u3120u4/322u5 satisfies the
propertiesg(0)5g8(0)50 and is independent ofm as re-
quested by the conjecture. For the Hamiltonian syst

uzz1mu12u227u31 20
3 u

422u550 a heteroclinic orbit
joining two equilibrium points exists at the valu
m5mh520.153 897. In Fig. 1 the reaction termf (u) is
shown together with the~scaled! potential. It is clear that a
heteroclinic solution joining the point u50 to
u15uh50.262 156 exists. In this case the resonanced can
be calculated. Its value is given by d5dh
5Af 8(uh)/mh50.865 558.

Let us now consider the propagating fronts which ar

solution of uzz1cuz1mu12u227u31 20
3 u

422u550. Be-
fore giving the results of the numerical and analytical cal
lations, we show the plot of the functionf at several values
of m, which will make clear the numerical and analytic
results that follow. Asm increases the equilibrium poin
u1 increases until atm51/3 it reaches the valueu151,
wheref 850. Above this value ofm there is a discontinuou
jump in u1 , the front joins the originu50 to a new fixed
point which corresponds to a different root of the polynom
f (u). In Fig. 2 we show the functionf at different values of
m. At m51/3 the fixed pointu151 and the derivative
f 8(u1)50. At m50.4, we see that the value ofu1 is now
the new root off which did not exist at low values ofm.

First we describe the results of the numerical integrati
of the initial value problem for Eq.~1! with sufficiently lo-
calized initial value perturbationsu(x,0). In Fig. 3 we show
the asymptotic speed of the front as a function ofm. We see

FIG. 1. Graph of the reaction termf and the corresponding
scaled potential at the value ofm for which the speed of the fron
vanishes and the system is Hamiltonian.
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that even though the value ofu1 is discontinuous, the spee
is a continuous function ofm. The solid line shows the nu
merical results and the dotted-dashed line corresponds to
linear or KPP value 2Am. The dashed line is the speed pr
dicted by the conjecture Eq.~4! with d50.865 558. The
valuecGor gives a good approximation nearmH ~where it is
exact by construction!, it departs from the correct value a
largerm and predicts erroneously the transition to the K
regime. Asm approaches 1/3 the valuecGor is no longer
applicable as it predicts a complex value for the spe
Abovem51/3 the value predicted bycgor is well above the
observed value. In conclusion, from the numerical integ
tion it follows that for the reaction term that we have co
sidered the conjecture is not valid andd is not a constant
along the curvec(m). Therefore we have calculated th
value ofd along the curve. Once the speed is obtained
merically the value ofd is then computed from Eq.~3! which
can be expressed as@12#

d5
2c1Ac224 f 8~u1!

c1Ac224 f 8~0!
. ~5!

FIG. 2. Graph of the reaction term at different values ofm. The
value of the stable point increases withm until m reaches 1/3. A
discontinuous jump in the stable point occurs at that value.

FIG. 3. Graph of the speed obtained from the numerical integ
tion of the initial value problem. The speed of the front is a co
tinuous function ofm. In the range ofm shown the speed is greate
than the linear or KPP value.
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The graph ofd as a function ofm is shown in Fig. 4. At
m5mh it adopts the analytically calculated value from t
Hamiltonian case, decreases to a valued50 at m51/3,
jumps discontinuously to a larger value and increases f
there on. This discontinuity is due to the discontinuity
u1 and of f 8(u1). At the value of m51/3 where
f 8(u1)50 it is evident from Eq.~5! that d50. As we will
show below, at this value ofm the speed and the asymptot
behavior for the front can be calculated analytically and i
found that the front does not approach the fixed po
u151 exponentially. We next show that atm51/3 the front
approachesu51 asu;12A/z.

By making use of variational principles@6,10# with suit-
able trial functions, one can show thatA3/2<c<A3/2 so that
the speed is exactly 3/2, which confirms the numerical
sults. The exact value of the speed can be obtai
analytically from the variational principles due to th
fact that for m51/3 the derivative of the front can b
calculated exactly. The derivative of the front as
function of u, p(u)52du/dz satisfies the equation
p(u)p8(u)2cp(u)1 f (u)50 and the exact solution a
m51/3 is given byp(u)5A2/3u(12u)2. With this expres-
sion for p we may calculate the approach to th
fixed point u51. Near u51, p;A2/3(12u)2 so that
du/dz;2A(2/3)(12u)2 from where it follows that
u(z);12A(3/2)(1/z). We see then that at this pointd50
since the rate of approach is not exponential but algebr
Having seen numerically and analytically thatd is not con-
stant along the solution in this example we conclude that
the conjecture does not hold for general polynomials of
form given by Eq.~2!.

Here, in order to establish the possible range of validity
the conjecture, we consider a simpler class of polynom
for which the stable pointu1 varies continuously withm.
We shall analyze the neighborhood of the Hamiltonian c
by calculating the derivativedc/dm at mh directly from the
equation and compare it with the result that follows fro
Goriely’s expression for the speed. These two are found
differ, except in the special class of exactly solvable syste
f (u)5mu1un2u2n21.
Traveling front solutionsu(x2ct) of Eq. ~1! satisfy the

ordinary differential equationuzz1cuz1 f (u)50 from
where it follows, multiplying byuz and integrating,

FIG. 4. Value of the resonanced as a function ofm obtained
from the numerical integrations.
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f ~u!du, ~6!

where we have made use of the fact that for the fr
u8,0, so thatu can be used as the independent variable
the term involving the reactionf . Sincef and, hence,u1 and
c depend onm, taking the derivative with respect tom of Eq.
~6! and evaluating atmh we obtain

dc

dm U
mh

5
*0
u1~] f /]m!du

*2`
` uz

2dz U
mh

, ~7!

where we have used thatc50 at m5mh and that
f (u1)50. Since we will consider terms of the form
f (u)5mu1g(u), the integral in the numerator can be don
it yields u1

2 /2. The integral in the denominator can be e
pressed in terms of the potentialV(u) as follows. The front
in the Hamiltonian case is the heteroclinic solution of ze
energy~see Fig. 1! of the equationuzz1 f (u)50. Therefore,
at mh , uz

2/21V(u)50 and we finally obtain

dc

dmU
mh

5
u1
2 /2

E
0

u1A22V~u!du
U

mh

. ~8!

This expression gives the exact derivative ofc at mh .
Now we calculate the derivative obtained from Goriely

formula Eq.~4!. Again, usingc50 atmh we obtain

dcgor
dm U

mh

5
d22@12„u1 / f 8~u1!…]2g~u1!/]u2#

A2d~11d!@ f 8~u1!1dm#
, ~9!

where we used that]u1 /]m52u1 / f 8(u1).
We shall now compare the results for simple polynomia

First consider the exactly solvable casef (u)5mu1u22u3.
For this reaction termu152/3, mh522/9, f 8(u1)522/9,
d51, andg9(u1)522. We obtain that the exact derivativ
coincides with that obtained from Goriely’s expression, th
yield 9/A2. This was already guaranteed since the conjec
is based on a property of these exactly solvable systems

Next consider the reaction termf (u)5mu1u42u5. The
potential is given byV(u)5mu2/21u5/52u6/6. We find
u159/10,mh5293/104, f 8(u1)526393/104, d5A6 and
g9(u1)526392/102. From the exact expression Eq.~8! we
obtain

dc

dm U
mh

5
300

215130A617A3ln~2413A2!27A3ln~211A3!

'6.652 45
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and from Goriely’s expression we obtain

dcgor
dm U

mh

5
500

9~61A6!
'6.575 02,

which is close numerically but not exact. The example
have just considered was presented as one in which the
jecture seemed to hold. There is close numerical agreem
in this case, but it is not exact as it should be. We ha
calculated the slope of the speed atmh for reaction terms of
the form f (u)5mu1un2um for different values ofn and
m. The results are shown in Tables I and II. Even though
values are close for some exponents they differ significa
for others. Exact agreement is found only whenm52n21,
leading us to conclude that the conjecture is a character
of these special systems.

TABLE I. Comparison of the derivativesdc/dm at m5mh for
f (u)5mu1un2u5 for different values ofn.

n52 n53 n54

dc/dm ~Gor! 4.184 4.619 6.575
dc/dm ~exact! 3.990 4.619 6.652
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In conclusion, we have seen by means of a counterex
ple that the conjecture put forward, that relates certain pr
erties of the Hamiltonian systemuzz1 f (u)50 with the
speed of the front solution ofuzz1cuz1 f (u)50, is not sat-
isfied by general polynomial reaction termsf (u). Consider-
ation of a restricted class of polynomial reaction terms
ables us to calculate analytically the slope of the speed a
Hamiltonian case. It is found that the slope predicted fro
Goriely’s formula for the speed coincides with the exa
value, only, for the exactly solvable cases, this is stron
indicative that the conjecture is a property of the spec
systems where it was observed, and does not hold for m
general reaction terms.

This work was partially supported by Fondecyt Proje
1960450.

TABLE II. Comparison of the derivativesdc/dm at m5mh for
f (u)5mu1un2u7 for different values ofn.

n52 n53 n54 n55 n56

dc/dm ~Gor! 3.690 3.630 4.167 5.238 7.681
dc/dm ~exact! 3.385 3.554 4.167 5.280 7.763
g
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