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The magnetohydrodynamic equilibrium equation for magnetic confinement systems with
helical symmetry and longitudinal plasma flow is derived. The incompressible resistive
ballooning mode equation for systems with a coordinate of symmetry and rigid longitudinal
flow is also derived. A reduced equation is then obtained by expanding the ballooning mode
equation for a system with a large field period length compared with the plasma cross section.
An analytic solution is obtained for a model equilibrium with circular flux surfaces. In the
limit of small longitudinal velocity, the static mode width and growth rate scaling as the
resistivity to the one-third power are recovered. For small growth rates and large longitudinal
velocity, these growth rates are driven by the interaction of the magnetic curvature and the
centrifugal force with the radial pressure and mass density gradient, respectively, and scale

linearly with the resistivity at a reduced level.

l. INTRODUCTION

Resistive ballooning mode activity can have a signifi-
cant impact on the confinement properties of plasma con-
tainment systems at high values of beta ( ), which is the
ratio of the plasma pressure to the energy density of the mag-
netic field. To reach high values of B, auxiliary heating tech-
niques such as radio frequency waves or neutral beams must
be employed. These schemes can alter the distribution func-
tion of one or more of the species that make up the plasma,
resulting in a net mass flow. Experimentally, toroidal plasma
rotation has been measured in the ISX-B? and PDX? toka-
maks. In the PDX device, poloidal rotation velocities have
also been measured (with on-axis and off-axis neutral beam
injection), but these are about two orders of magnitude
smaller than the toroidal rotation velocities with the data
points displaying a wide scatter about a mean value of zero.?
The small poloidal velocities detected are attributable to the
strong damping caused by the magnetic pumping that re-
sults when plasma moves across a spatially varying magnetic
field. Plasma motion across planes of symmetry is unaffected
by this damping mechanism, thus the toroidal rotation is
significant in an axisymmetric system. Similarly, we can ex-
pect plasma rotation across symmetric planes in a system
with helical symmetry.

The magnetohydrodynamic (MHD) equilibrium prob-
lem in tokamaks with toroidal mass flow has been investigat-
ed both analytically* and numerically.>® In this paper we
shall extend the axisymmetric formulation presented in Ref.
4 for isothermal flux surfaces to a system with helical sym-
metry. Unlike static plasma configurations with a coordi-
nate of symmetry, the ideal and resistive ballooning stability
properties of rotating plasmas have not been extensively ana-
lyzed. Hamieri and Laurence have investigated the balloon-
ing mode spectrum and have derived a ballooning mode
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equation for an axisymmetric tokamak with rigid toroidal
flow in the ideal limit.” Following the approach of Bateman
and Nelson,? and incompressible resistive ballooning mode
equation in such a configuration (with rigid flow) was sub-
sequently derived and analyzed.®

In this paper we concentrate on stellarator configura-
tions, particularly those having a significant spatial magnet-
ic axis, so that the curvature caused by the helical compo-
nent of the magnetic field dominates over the curvature
caused by the toroidal component of that field. We thus treat
the limit in which the configuration possesses helical sym-
metry. We consider the case of longitudinal mass flow,
which in contravariant representation has only a component
in the ignorable coordinate. This corresponds to mass flow
across planes of symmetry. This work constitutes, therefore,
an extension to helical symmetry of the axisymmetric calcu-
lation presented in Ref. 9.

In Sec. IT we derive the MHD equilibrium equation for a
helically symmetric configuration with purely longitudinal
mass flow in which the plasma temperature is considered to
be a constant on each flux surface (isothermal model). In
Sec. III we derive the incompressible resistive ballooning
mode equation for arbitrary symmetry from the linearized
MHD equations for the case of rigid longitudinal flow. This
equation is also applicable if we ignore velocity shear as a
source of energy for instabilities. Thus Kelvin—-Helmholtz
instabilities are excluded from the dynamics of the problem.
For simplicity, we have assumed that the plasma pressure
and mass density evolve only by convection as in Ref. 8, and
we therefore have neglected the coupling to sound waves.
This coupling has been shown to have a net stabilizing effect
on resistive ballooning modes.'®!! In Sec. IV we obtain the
reduced incompressible resistive ballooning mode equation
in systems with helical symmetry and rigid longitudinal flow
by expanding in the smallness of the parameter € = ah,
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where a is the minor radius and 4 is the helical pitch. This
limit corresponds to the minor cross section of the plasma
being small compared with the length of a field period. In
Sec. V we obtain an analytic solution of the reduced incom-
pressible resistive ballooning mode equation in a model equi-
librium of a helical magnetic axis stellarator that has circular
flux surfaces. Finally, in Sec. VI we discuss the summary and
the conclusions.

Il. MHD EQUILIBRIUM WITH LONGITUDINAL FLOW

The relevant equations required to determine MHD
equilibrium with longitudinal mass flow are Maxwell’s equa-
tion

V-B =0, (1
the combination of Ohm’s with Faraday’s law

VX (VXB) =0, (2)
and the MHD force balance equation

VP + pp (VV)V = (VXB) XB. 3)

In a system with a coordinate of symmetry, the condi-
tion V-B = 0 implies that the magnetic field B in contravar-
iant representation is

B = V¢ XV + g (B-Vé)Vp X V6, (4)

where 2m( p) is the helical magnetic flux, p is the radial
coordinate, @ is the poloidal angle, and ¢ = AZ is the angle-
like ignorable coordinate. The Jacobian of the transforma-
tion from rotating Cartesian coordinates (X,Y,4) to flux co-
ordinates ( p,0,¢) is \/§ For the case that the velocity field V
has only a longitudinal component in the contravariant rep-
resentation, the scalar product of V¢ with Eq. (2) shows that

VeVs =Q(p) (5)

is a flux surface constant. From Ohm’s law, V&, = VXB,
one finds also that Q( p) = — ®; /Y, where @ ( p) is the
electrostatic potential, and the primes indicate derivatives
with respect to p. For this case of purely longitudinal flow in
helical symmetry (or axisymmetry ), the force balance equa-
tion becomes

VP —p,Q*(p)Vg,, = (VXB)XB, (6)

where g, is the lower metric element associated with the
coordinate of symmetry. Specifically for helical symmetry,
849 = (1 + h?r?)/h?, where r is the distance of any point
from the geometric axis. For axisymmetry g,, = R ?, where
R is the distance from the geometric axis.

The Vp X VO component of the force balance equation
yields the condition that the longitudinal magnetic field in
the covariant representation is a constant on a flux surface,
namely, that

VgBVpX VO = F( p). (7)

We consider a two-species plasma and express the pres-
sure P = (N; + N,)T, where the electrons with density N,
and the ions with density N, have the same temperature 7.
We further assume that N; = N,, so that we can express the
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mass density p,, = M;N, (M, = ion mass) in terms of P.
Py = (M,;/2T) P. (8)

Invoking the condition of rapid heat flow along the magnetic
field lines, the temperature is taken as a constant on a flux
surface. Then the component of force balance along the mag-
netic field lines yields the relation

P=TI(p)exp {[M,Q*(p)/4T(p) ]84 }- (9)
In helical symmetry, g,, depends only on 7, which implies
P=P(p,r) and p,, = py ( p,r). In axisymmetry, g,, de-
pends only on R, thus P= P(p,R) and p,, = p,( p,R).
Two useful relations can be obtained from Eqs. (8) and (9):

9P\ o) Q2 p)r, (10)
orl, ‘

dou | _ Pu(pr)Q(p)r (1
ar i, P(p,r) )

The V@ X V¢ (radial) component of force balance yields
an expression for the longitudinal current density in contra-
variant representation given by

apP dF
Vo= ——| — (B-Vg) —. 12
ivé e (B-¢) — ” (12)
Expanding (j*V¢) we obtain the MHD equilibrium equation
1 JP dF
V- (KVy) = —— —| —KF(¢) — — 2hK*F(3)),
(KVY) nE oy, (¥ a0 ¥
(13)

where K= (1 + h %) ~". This equation describes the MHD
equilibrium in helically symmetric systems with longitudi-
nal mass flow in which the plasma temperature is a flux
surface quantity. The axisymmetric version of this equation
was derived earlier by Maschke and Perrin.*

ll. INCOMPRESSIBLE RESISTIVE BALLOONING
EQUATION

The system of linearized MHD equations required to
determine the stability properties of a magnetic confinement
device are Maxwell’s equation

Vb =0, (14)
the combination of Ohm’s law with Faraday’s law
b
_ét_=VX(be) + VX (vXB) — VX (VXb), (15)
the MHD equation of motion
ov
Py 3= — PV (vV) —p, (VXV) XV
—pu(VXV)IXV—p(VV)V —Vp
+ (VXb) XB 4 (VXB) Xb, (16)
the convective pressure evolution equation
L — (V- (+VIP, (17)

and the convective mass density evolution equation
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%’-t’—= — (V)5 — (v7) . (18)
The equilibrium magnetic and velocity fields are B and V,
respectively. The equilibrium pressure and mass density are
Pandp,,, respectively. The perturbed magnetic and velocity
fields are b and v, respectively. The perturbed pressure and
mass density are p and p, respectively.

We invoke the ballooning mode representation’'*" in a
flux coordinate system in which the magnetic field lines are
straight for configurations that have a coordinate of symme-
try. Then any perturbation & is expressed as

E(p,0.8,1) = E( p,B,1)explinS( p,6:8,1)],

where the amplitude 5 is a slowly varying function, the expo-
nential contains a rapidly varying phase, and n> 1 is the
mode number associated with the ignorable anglelike coor-
dinate ¢. The eikonal function S is assumed to satisfy the
condition B-VS = 0, which guarantees that the perturba-
tions vary slowly along the magnetic field lines. Analysis of
any one of the set of equations (15)—(18) also shows that the
eikonal phase factor must satisfy the condition

12,13

(19)

£=£§+V'VS=O-

20)
dt at (

These two criteria for the eikonal .S can be satisfied by choos-
ing

where k, ( p) is the radial wavenumber and g( p) is the deri-
vative of the longitudinal magnetic flux with respect to the
helical magnetic flux within the flux surface labeled with p in
a coordinate system in which the field lines are straight.'*
The last term in Eq. (21) actually corresponds to a Doppler
shift of the mode frequency as observed in a frame of refer-
ence rotating with the fluid. This Doppler shift is introduced
because in the laboratory frame of reference, a ballooning
instability of mode number 7 appears to rotate at a frequency
n{) past the observer, a rate that is much faster than the
characteristic growth rate of that mode. To resolve this type
of local instability on a given flux surface, it is necessary,
then, to make the transformation to the frame of reference
moving with the fluid at the angular frequency Q( p) that
corresponds to the plasma rotation on that particular sur-
face. The salient feature of this transformation is the
Doppler shift, which we find convenient, however, to in-
clude as a modification of the eikonal because it is multiplied
by the mode number #, the inverse of which is an expansion
parameter in the determination of ballooning instabilities.
The problem is simplified further by neglecting the velocity
shear ' as a source of free energy for instabilities. We thus
ignore the Kelvin—Helmholtz class of instabilities and con-
centrate on those associated with a rigid longitudinal plasma
mass flow. The potential implications of velocity shear on
the ideal ballooning stability of a rotating plasma fluid are
discussed further in Ref. 7.
We express the perturbed magnetic field as

b=>5,(B/B?) + b,VS + b (BXVS)/|VS |,
and the perturbed velocity field as

(22)
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v=u,VS +v, (BXVS)/B? (23)

which ignores the effects of parallel dynamics thus excluding
the propagation of sound waves along the magnetic field
lines. Then from Maxwell’s equation [Eq. (14)] we find
that b, is a quantity of O(1/r) in the ballooning expansion.
Similarly, the component of Ohm’s law [ Eq. (15) ] along the
magnetic field lines demonstrates that Vev~Q(1) in the 1/n
expansion, which implies that v, ~O(1/r). The VS compo-
nent of the equation of motion { Eq. (16) ] demonstrates that
by = — p + O(1/n). Then, assuming that the amplitudes of
the perturbations evolve as exp(wt), we find that the BX VS
component of Ohm’s law reduces to

(0 + n?9|VS [2)b, = (|VS|/B2)(B-V)v, + O(1/n),
(24)

with 7~ 0(1/n?), the BX VS component of the equation of
motion reduces to

Pn|VS Pov, = — [BXVS(V-V)V] 5
—2(BXVS«)p + B*(BV)b, +O(1/n),
(25)
the convective pressure equation reduces to
wp = — [(BXVSVP)/B?|v, +O(1/n), (26)
and the convective density equation reduces to
wp = — [(BXVSVp,)/B*]v, +0(1/n). (27)

Substituting for b, p, and p in the BX V.S component of the
equation of motion, we obtain the incompressible resistive
ballooning mode equation for systems with a coordinate of
symmetry and mass flow in the ignorable coordinate

Vs /B VS
[1+ (ny/@) VS 7] B?
BXVS-VP\ / BXVS«
+ 2( B2 ) ( B2 )Ui

BXVS+Y, «(V-V)V
(g s,

(B'V)( (B-V)vl) — Pu® L

(28)

The first and second terms correspond to the usual field line
bending stabilization weakened by resistivity and inertia, re-
spectively. The third term represents the interaction of the
pressure gradient with the magnetic field line curvature (de-
noted by ), which drives ballooning and interchange
modes. The fourth term constitutes the effect of the mass
flow and corresponds to the interaction of the mass density
gradient with the centrifugal force associated with that flow.

IV. REDUCED RESISTIVE BALLOONING EQUATION

The reduced incompressible resistive ballooning mode
equation for helically symmetric systems with rigid longitu-
dinal mass flow is obtained by expanding the corresponding
full equation in the smallness of the parameter € = ah. The
expansion is carried out in a magnetic flux coordinate system
( p,0,9), where the poloidal angle & is such that the magnetic
field lines are straight. As a result we have yg(B-V¢) = g¢/,
from which we derive that the Jacobian is
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_4p¥ [1 é[xz y 4+t
8 h?F(p) " * q
Gz

after expanding the contravariant longitudinal magnetic
field. Here X represents the distance from the geometric axis
to the projection of some point in the plasma onto the mid-
plane of the configuration and Y represents the distance
from that point to the midplane. Both X and Y are normal-
ized to the minor radius a in Eq. (29). Then the B-V operator
reduces to

¥ 9 _

h*F(p) 1
+0(62)]—— (30)
Vg 99 a(p) [
while B 2 can be written as
BX=hF*(p)[1+0(e)]. (31)

The derivatives of B * with respect to & and p require retain-
ing the O(€?) terms to yield

9B? X . aY
9B _ _reprr [x— r9Y
30 (PIX g T 20
oX 3°X aya2Y) 2]
L 24 0 32
(aa 07 T35 397/ TOE)]  OD
and
9B” W —2eh?F( p) {XiX-+ y9Y
dp dp dp
: aX 3°X Y 3%Y
e
@YD 36 3p 36 | 36 op 36
“—'-—)[(BX) (%) ]+oe)
+q2(q 2 +(5) | o).
(33)

The expression for the magnetic field line curvature
(BXVS«k) is

BXVS«k = _1__ [2__ 9B? — [M
21 dp dp JgB?
2
r/fF(p)q YEP) g_g,) JB ] (34)
JgB? a0

where B,, is the radial magnetic field in the covariant repre-
sentation and 8, =k | /q' represents the radial wavenumber.
Expansion of the MHD equilibrium equation [Eq. (13) ] for

€< 1 yields
P| | peppr o - SEA) (P g)[(3KY
ap |, 7 (p) F q/1l\o8
6Y)] 7 F’ 2, y2
= X*+Y
+(ae E xrv 1y
We' | 9X 3°X | dY %Y
aeF(p) 30 dp 38 36 Jp 30
X 3’x 3Y 3%Y
_gxox oY 0@ ]
3 36% dp 867 +0(eD
(35)

Equations (33) and (35) allow us to obtain an expression for
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[2(8P /3p)|, + OB*/dp], and noting that when we expand

B, ¥/ (VgB?), it is O(€*) compared with the leading-order
terms, the magnetic field line curvature in the ballooning
mode equation reduces to

BXVSk e
-2 = K (pH[1+0 R
L 7 (P [1+0(e))]

the centrifugal force term reduces to

(36)

. . 2
BXVS-(V-V)V _ _62(“ )K (p,0)[1+0(eM)],

B? BRTAVE
37
the term (BXVS'VP)/B? reduces to
vai*-vz’ ( esz 0))
B 1// dp i,
X[1+0()], (38)
and the term (BXVS-Vp,,)/B 2 reduces to
BX VSV a 2 0?2
- Pum =i'( Pm +€2PM2 K,(p,e))
X[1+0()]. (39
The notation we have employed here is such that
ax ay 7). ¢ a¥\q'
K. (p)=x2% Y————(X_ y_)_
(.0 dp dp a6 + a6
X (0 —8,) (40)
and
2y
K (p,6)=K,(p,0) +
P P a€eF( p)
(3X a*’x ay 82Y)
dp 96 ap 062
(2.4 R3¢ ay %Y q
LA (8- 6,).
30 36 30 30°
(41)

We normalize F ( p) to F,, its value at the edge of the plas-
ma, and ¢ to aeF, . The pressure P, the mass density p,,, the
resistivity #, and the longitudinal velocity function ) are
normalized to Py, p,,0, 10, and £, their respective values at
the magnetic axis. The growth rate o is expressed in helical
Alfvén units wy=h°F,/\[py,. We define B,
=2P,/(h*F?) as the beta on axis caused by the pressure and
B, = proQ3/h*F? as the beta on axis caused by the rota-
tion. The magnetic Reynolds number is Sy =a’wy /7, With
these normalizations, we find that the expression

|VS |2 = (V$:Vd) — 29(VE-V$) + ¢*(V6-V6)

— 24'[(Vp'V¢) — q(Vp-¥6)](6 — 6,)

+ (¢)*(Vp-Vp) (8 — 6,)* (42)
reduces to
VS |* = [F*/a*(#)?1a, (p,0) [1 + O(e))],  (43)
where
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X\ (Y . q (X 9X QY Y
o=(5)+(5) 2L (5% 5 %)
w PO ={3) "% a0 36 3 0
X\ (IYY?
o-a0+(L)](55) + (5]
X ( )+ 30 + 20
X (68— 6,7, (44)

and the reduced incompressible resistive ballooning mode
equation becomes

Kl { [F2(p)/ (¥)]a, (p,0) gv_ll
86 | [1+ (n’n/wSg)[F*/(¥)?la,(p.8)] 96

Pu°q

_ 4(p)
(¥)?

@) a, (p,0)v, =0,

D(p,&)v, —
(45)

with D( p,@) the driving term, which is given by

2apM
g

D(pyg) =ﬂp'g£ c

+2€°B,p K, ( p,0) [Kc (p,0)

N B, (pMQ )K (p,g)]
B, \ P

The first term corresponds to the usual interaction between
the radial pressure gradient and the magnetic field line cur-
vature. The second term corresponds to the interaction
between the radial mass density gradient with the centrifugal
force. The third term represents the interaction between the
gradients of the pressure and the mass density that lie on the
flux surface with the magnetic field line curvature and with
the centrifugal force, respectively. This last term in the
expression for D contains elements that are constant and
linear in (@ — 6, ), which are O(€?) smaller than the corre-
sponding elements in the first and second terms. For consis-
tency, these should be neglected. However, from the last
term we are interested in retaining the coefficient that is qua-
dratic in (8-6, ), which though formally small can have a
significant impact on the mode structure and growth rate
scaling at large (€ — 6, ). This would be more obvious if D
were written as D=a,+a,(60 —6,) + €a,(§ —6,)?,
where the coefficients g; are periodic in 6 and a, vanishes in
the absence of plasma flow.

(46)

V. ANALYTIC SOLUTION

We consider a model equilibrium, with circular flux sur-
faces, which corresponds to X=X, +pcosf and
Y = p sin 6, where X, is the distance between the magnetic
axis and the geometric axis. For this model, the functions
a (p.8), K, (p,8),and K_( p,0) reduce to

a, (p,0) =1+5(6—6,),
K, (p,8) =p+ X, cos8 + X,,5(6 — 6, )sin 6,

and
K.(p,60)=(p/q*)(1 +¢°) + 2('/F ) + X, cos 6

+ X,,5(0 — 6, )sin 6, (49)
respectively, where we have defined the magnetic shear as

(47)
(48)
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s=pq'/q. We invoke the electrostatic approximation
azo(¥')?/F?<1, where ay =Sz /n’y to simplify the field
bending stabilization term to az w (3 *v, /36 2). We apply the

two-length-scale expansion to express v, as
v, =g+ v, cos 8 + v, sin b, (50)

where v, v, and v, are slowly varying amplitude functions
compared with the trigonometric functions, and solve the
ballooning mode equation order by order to obtain

2u

. = 51
b ar® + W + pp (@° + A 2)52(0 — 6, )? o OD
and
2us(0—6,)
s = 2 kz 2 7V, (52)
AR + W+ py (@° +A1°)s°(6—6,)
where we have defined
T B veer %] )
u=s — O ——| | X,,, (53)
2 (¢)2 ap |,)°M
A —ﬁr92[1+(ﬂ,/ﬂp)(pMQZ/P)](GXM)Z, (54)
and
— qz [ JdP ( 2 2'/’)
w= B, — q) +
(¢,)2 ? r q
a
+ B, p? oM. +pr"] - (55)
ap r

Using Eqs. (51) and (52), the equation for the envelope of
the resistive ballooning mode becomes

@ gevg
(wdy — 2u*) + ¢,5* (6 — 0,)* +d3s* (8 —6,)*

B dy+ds*(8—6,)°

Xvy =0, (56)
where

dy=azo +w, (57)

di=py g/ (¥)]1(@*+ A7), (58)
and
c1=pp ¢/ (W) (@® + A 2) Qw + agw) — 202 (59)

Asymptotic analysis of the envelope equation for resistive
ballooning modes yields expressions for the width L of the
mode and a scaling for the growth rate ».!' The width of the
mode is

(60)

L= ( aro(y)’ )'/4
Pqu(a)Z + ,1 2)s2
and the approximate dispersion relation for the regime
dominated by resistive ballooning activity is

pul @/ (W) (@0* + A Hagow = 2u. (61)

In the small rotation velocity regime o?> 8,0 (eX,, )?, we
recover the static results'” that the mode width is limited by
plasma inertia

()
n*n pruwg’s’

and the growth rate

(62)
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_[rn_< (_f;’p_iﬁ

W = —_—en
25z pu(¥)Y’ \ € dpl,
a 2 1/3
+é'_92__p£ )(eXM)z] (63)
€ ap r

is determined by the interaction of the radial pressure gradi-
ent with the geodesic curvature plus a correction caused by
the interaction of the mass density gradient with the geodesic
component of the centrifugal force. The mode scales with the
resistivity to the one-third power. In the small growth rate,
large velocity regime w®<f3,Q%(€X,,)?, the width of the
mode is determined by the interaction of the pressure and
mass density gradients that lie on the flux surface with the
geodesic components of the curvature and centrifugal force,
respectively,

Sk (¥
L= 2 2.2
n'n puq’s

o 174
X
B.Q*[1 + (B,/B,) (pu¥*/P)] (EXM)Z)
(64)

and the growth rate o scales linearly with the resistivity at a

reduced level
2

=(n2_77_q__
25 PM(W)2

[(B,/€) (3P /3p)|, + (ﬂ,/e)nz(apM/aml,]z)

(65)

where the interaction of the radial pressure and mass density
gradients with the geodesic curvature and centrifugal force
components, respectively, drive the modes, while the pres-
sure and mass density gradients on the flux surfaces interact
with geodesic components of the curvature and the centrifu-
gal force, respectively, to stabilize the modes. It is of interest
to note that the axisymmetric growth rate scaling and mode
width are recovered in either of the limits we have investigat-
ed by taking €X,, = 1 (see Ref. 9).

As an application, we consider a model equilibrium that
has P=05, P'=10, p, =05, pj, =10, ¢ =025,
(¥)2=025 €=} (eXy)*=0.1, =10, Sx= 108,
Q = 1.0, and B, =0.2. We investigate first a case with 5,
= 0.01. We find that a mode with # = 10is in the rotational-
ly dominant regime and has @ = 3.8 102> For n = 50,

however, the mode is in the resistively (%'/) dominant re-
gime and has @ = 4.6 X 10~ The transition phase between
the two regimes occurs when w” ~f3, 0 (€X,,)?, which cor-
responds to @ = 3.2X 10~ % in this example. If we increase
the plasma rotation so that 5, = 0.05, we obtain that the
n = 50 mode is now in the rotationally dominant regime and
has a reduced growth rate @ = 2.3 X 102 For higher values
of n, finite Larmor radius effects that have been neglected
become increasingly more important.

Vi. SUMMARY AND CONCLUSIONS

We have derived the MHD equilibrium equation for
systems with helical symmetry with mass flow in the longitu-
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dinal direction in which the plasma temperature is assumed
to be a constant on a flux surface. We have also derived the
incompressible resistive ballooning mode equation for heli-
cally symmetric systems with longitudinal mass flow that is
either rigid or in which we neglect velocity shear as a source
of free energy for instabilities. This equation is simplified by
expansion in the smallness of the parameter € = aA. An ana-
lytic solution of this equation is then obtained for a model
equilibrium of a helical axis stellarator with circular flux
surfaces. For the small velocity limit, we recover the static
results that the mode width is determined by the plasma
inertia and that the growth rate scales as the resistivity to the
one-third power. However, in the small growth rate—large
plasma velocity limit—the width of the mode is determined
by the interaction of the pressure and mass density gradients
that lie on the flux surface with the geodesic components of
the magnetic curvature and the centrifugal force, respective-
ly. Also in this limit, the growth rate scales linearly with the
resistivity at a reduced level and is driven by the interaction
of the radial pressure and mass density gradients with the
geodesic components of the magnetic curvature and centri-
fugal force, respectively.

In stellarator configurations, which are basically cur-
rent-free devices, it is the resistive pressure-driven MHD ac-
tivity that may have the most profound impact on the con-
finement properties of the plasma at high 8. We have
demonstrated that a relatively modest amount of plasma ro-
tation can significantly reduce the resistive ballooning mode
growth rates and as a result diminish the potentially deleteri-
ous effects that these types of instabilities may induce on the
plasma transport.
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