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Resistive ballooning modes in helical axis stellarators
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The helical nature of the magnetic axis induces a curvature component that drives resistive ballooning

modes, which scale as the resistivity to the third power in a helical axis stellarator.

Stellarator configurations that have a helical magnetic axis
have been demonstrated theoretically to possess very favor-
able ideal magnetohydrodynamic stability properties. ' In
this paper, we investigate the driving mechanism and deter-
mine the scaling of resistive ballooning-mode activity for a
helical axis stellarator in a geometry with helical symmetry.

The incompressible resistive ballooning mode equation
for arbitrary magnetic confinement geometry is

Qx k~ ~ ~

(1+n'qkj2 /y) dQ B2

2k]—p y2
2 Vg=0, (1)

where ~ is the magnetic field line curvature, Q is the helical
flux function, q is the resistivity, and n is the longitudinal
mode number. We investigate this equation in a (p, 8, $)
flux coordinate system in which the magnetic field lines are

straight. The radial coordinate is p, the poloidal angle is 8,
and the anglelike variable P= hZ identifies the ignorable
longitudinal coordinate. The condition that the magnetic
field lines be straight requires Jg (8 V'$) = q(p)p', from
which we obtain that the Jacobian Jg is

f r

Wg= 8~ '1+ ~X+Y+—X —Y
h'F(p) q (j8 QO

(2)

where F(p) is the longitudinal magnetic field in the covari-
ant representation, L is the distance from the geometric axis
to the projection of some point in the plasma to the mid-
plane, and Vis the distance from that point to the midplane.
These distances are normalized to the minor radius a. With
this expression for vg, we can construct expressions for B2,
kJ, and 8X kq ~ ~, which we expand in the smallness of the
parameter a=ah to obtain the reduced ballooning-mode
equation

(3)
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where P0=2pc/(h2F~), and where we have normalized the pressure to po (its value at the magnetic axis), @ to aeF„and F
to F, (its value at the edge of the plasma). The resistivity is normalized to its value on axis; the growth rate y is expressed
in units of the poloidal Alfven frequency h F, / Jp, and Sz is the magnetic Reynolds number. The function nt(p, 8),
which represents k$ for e (( 1, is

ng(p, 8) = +()X (j Y (4)
, p, , ~p

The function of E~(p, 8),

X( 8) 2XBX+ YBY+2~q
e e
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Qp Qg2 Qp Qg2

is related to the normal curvature, and the function K, (p, 8),

~ ( 8)
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is related to the geodesic curvature.
An approximate solution of Eq. (3) can be obtained for a model equilibrium with circular flux surfaces represented by

X=X +pcos8 and Y=psin0, where X is the distance from the magnetic axis to the geometric axis. We invoke the elec-
trostatic approximation and apply the two-length scale expansion, following the procedure carried out for tokamaks, to ob-
tain the envelope equation:

B8' (P')' " ' a y+ l y'q'/(y')'l l 1 +s'(8 —8 )'1+w
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where s=pq'/q is the magnetic shear, u= —0.5Pcp'q'X~/
(P'), tv=Pop'[p(1+ q )+2/'q'/Fi/(Q ), and ag =Sg /
n2q. This approximation is valid for mode structures very
extended in 0. The asymptotic analysis of Eq. (7) yields the
width L of the mode given by

' 1/4
(q ')'

(8)
, n'g pq s

The tokamak analysis of Hender et al. can be further ap-
plied to Eq. (7) to obtain the dispersion relation
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The regime dominated by the resistive ballooning mode cor-
responds to 2w/a~ && y && a~(P')'/(2q'), which yields
the scaling ]/3, ' 2/3 1/3

'y= 2u (Q ) Pop qXm n r)
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R ELATION

Noncircularity effects introduce additional factors in Eq.
(10) without altering the basic scaling (P(r) ) ' 3 and
compressibility effects become important when the growth
rate is small and comparable to the frequency of sound
waves.

In Fig. 1, we illustrate a numerical solution of Eq. (1)
with the parameters described in the figure caption and
compare the growth rates obtained with those from the
dispersion relation given by Eq. (10). The scalings are vir-
tually identical except for a small offset due to a weakly un-
stable ideal mode.

The resistive ballooning modes in stellarator configura-
tions with a helical magnetic-axis dimension comparable to
the minor radius are driven by the component of the curva-
ture induced by the helical motion of the magnetic axis
about the geometric axis. These modes scale as the resis-
tivity to the third power.
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FIG. 1. Growth rate y as a function of the mode number from
the full equation (solid curve) and from the dispersion relation
(dashed curve) on the flux surface p 0.45 for a straight stellarator
configuration with a circular boundary and Pp=0.4%, X~=0.5,
e =0.2, and Sg = 10 .
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