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Abstract

The 1D nonlinear diffusion equation has been used to model a variety of phenomena in different

fields, e.g. population dynamics, flame propagation, combustion theory, chemical kinetics and many

others. After the work of Fisher [Ann. Eugenics 7 (1937) 355] and Kolmogorov et al. [Etude de

l’equation de la diffusion avec croissance de la quantité de matiére et son application a un probleme

biologique Vol. 1] in the late 1930s, there has been a vast literature on the study of the propagation

of localized initial disturbances. The purpose of this review is to present a rather recent variational

characterization of the minimal speed of propagation, together with some of its consequences and

applications. We consider the 1D reaction–diffusion equation as well as several extensions.

Keywords: reaction diffusion equations; variational principles; combustion; population dynamics; front

propagation

Front propagation for the 1D reaction–diffusion equation

ut ¼ uxx þ f ðuÞ with ðx; tÞ [ R £ Rþ; ð1Þ

with f ðuÞ [ C1½0; 1� and f ð0Þ ¼ f ð1Þ ¼ 0; has been the subject of extensive study as it

models diverse phenomena in population dynamics [1,2,3], combustion theory, flame

propagation [4,5], chemical kinetics and others. There are many important recent reviews

on the dynamics of the solutions of the nonlinear reaction–diffusion equation both in the

physics literature [6] as well as in the mathematical literature [7,8,9]. We should also point

out that the propagation of disturbances in more realistic, and more complicated pattern-

forming equations has been the study of many authors, and significant results have been

obtained recently (see, e.g. Ref. [10] for the study of the speed of propagation of the

Swift–Hohenberg equation, or [11] for the study of the critical speed of traveling waves in

the Gross–Pitaevskii equation; see also [12] and many others).

The time evolution for a sufficiently localized initial condition uðx; 0Þ has been

studied for different reaction terms. Aronson and Weinberger [13] showed that any

positive sufficiently localized (this means decaying faster than exponentially for
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lxl!1) initial condition uðx; 0Þ with uðx; 0Þ [ ½0; 1�; evolves into a traveling front

propagating at a speed cp (i.e. for large t; uðx; tÞ behaves as qðx 2 cptÞÞ: The shape of the

traveling front is determined by the solution to the following two-point boundary-value

problem:

q00 þ cq0 þ f ðqÞ ¼ 0; ð2Þ

with

lim
x!21

qðxÞ ¼ 1 and lim
x!þ1

qðxÞ ¼ 0: ð3Þ

Aronson and Weinberger characterized the asymptotic speed cp as the minimum

value of the parameter c in Eq. (2) for which the solution qðxÞ is monotonic. For

Fisher’s equation, Kolmogorov, Petrovsky and Piskunov (KPP) [2] (see also the

translation of this article in Ref. [14]) showed that cp ¼ cKPP ¼ 2: In fact, for any

reaction profile f ðuÞ such that 0 # f ðuÞ # f 0ð0Þu; Kolmogorov et al. proved that cp ¼

2
ffiffiffiffiffiffi
f 0ð0Þ

p
(see, e.g. Refs. [2,8,13]). For a general f the speed of traveling fronts for

Eq. (1) is unknown in closed form. For this reason, a variational characterization of

the speed is an important tool for estimating it. The first variational characterization

was obtained by Hadeler and Rothe (see, Ref. [15] and also Theorem 1 in Section 1).

The work of Hadeler and Rothe has had many different extensions and applications

(see, e.g. the monograph of Volpert et al. [16]). More recently, we have obtained

two new different characterizations of the speed of propagation of traveling fronts of

Eq. (1), which we will review in the following.

We will distinguish three types of reaction terms.

Case A: f 0ð0Þ . 0; f ðuÞ . 0; u [ ð0; 1Þ: In population dynamics this case is known as

heterozygote intermediate. This is the case considered in the classical work of

Fisher [1] and of Kolmogorov et al. [2].

Case B: There exists a [ ð0; 1Þ such that f ðuÞ # 0 for all u [ ð0; aÞ; f ðuÞ . 0 for all

u [ ða; 1Þ and
Ð1

0 f ðuÞdu . 0: This is known as the combustion case in the

literature.

Case C: There exists a [ ð0; 1Þ such that f ðuÞ , 0 in (0,a), f ðuÞ . 0 in (a,1) and
Ð1

0 �

f ðuÞdu . 0 and f 0ð0Þ , 0: In population dynamics this case is known as

heterozygote inferior. It is also known as the bistable case.

Our main results, concerning a variational characterization for the speed of

propagation of traveling fronts for the nonlinear diffusion equation (1), are contained

in the following two theorems. The first variational characterization (Theorem 1) is

valid only in Case A, while the second variational characterization (Theorem 2) is valid

for all three cases.

Theorem 1 [17]. Let f [ C1ð0; 1Þ with f ð0Þ ¼ f ð1Þ ¼ 0; f 0ð0Þ . 0 and f ðuÞ . 0 for

u [ ð0; 1Þ: Then,

cp ¼ J ; sup{IðgÞlg [ E}; ð4Þ
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where

IðgÞ ¼ 2

ð1

0

ffiffiffiffi
fgh

p
du

ð1

0
g du

; ð5Þ

and E is the space of functions in C1ð0; 1Þ such that g $ 0; h ; 2g0 . 0 in ð0; 1Þ, gð1Þ

¼ 0; and
Ð1

0 gðuÞdu , 1: Moreover, if cp – cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
; J is attained at some ĝ [ E ;

and ĝ is unique up to a multiplicative constant.

Theorem 2 [18]. Let f [ C1ð0; 1Þ with f ð0Þ ¼ f ð1Þ ¼ 0; and
Ð1

0 f ðuÞdu . 0: Then,

cp2 ¼ L ; sup{MðgÞlg [ F}; ð6Þ

where

MðgÞ ¼ 2

Ð1
0 fgduÐ1

0ðg
2=hÞdu

; ð7Þ

and F is the space of functions in C1ð0; 1Þ such that g $ 0; h ; 2g0 . 0 in ð0; 1Þ,

gð1Þ ¼ 0; and the integrals in Eq. (7) exist. Moreover, if f belongs to cases B or C, or to

Case A with cp – cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
; L is attained at some ĝ [ F ; and ĝ is unique up to a

multiplicative constant.

These two theorems have been extended in several directions. In this review, we

give the complete proof of these two variational characterizations (see Section 1),

we provide the analogous results for the case of density-dependent reaction–diffusion

equations (see Section 2). In Section 3, we apply these theorems to obtain some

properties of thermal combustion waves. Finally, in Section 4, we obtain a variational

characterization for the minimal speed of fronts for the reaction–convection–diffusion

equation.

1. Variational principles for the speed of propagation of traveling fronts

For a general profile f ðuÞ; the speed of propagation of traveling fronts for Eq. (1)

is not known in closed form. However, there are several variational characterizations

of the speed of propagation of the fronts that offer the possibility of accurately

estimating it. The first variational characterization was derived by Hadeler and Rothe

[15]. They considered the general continuously differentiable nonlinearity f ðuÞ;

satisfying,

f ð0Þ ¼ f ð1Þ ¼ 0; f ðuÞ . 0; for u [ ð0; 1Þ; f 0ð0Þ . 0; f 0ð1Þ , 0: ð8Þ

Their variational characterization is embodied in the following min–max theorem.
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Theorem 1.1 (Hadeler and Rothe, [15], Theorem 8, pp. 257). The speed of propagation of

the traveling fronts of Eq. (1) is given by

cp ¼ inf
r

sup
u[ð0;1Þ

r0ðuÞ þ
f ðuÞ

rðuÞ

� �
; ð9Þ

where r is any continuously differentiable function on ½0; 1� such that

rðuÞ . 0; u [ ð0; 1Þ; rð0Þ ¼ 0; r0ð0Þ . 0: ð10Þ

Remark 1.2 For extensions of the variational characterization of Hadeler and Rothe as

well as many applications see the monograph [16].

Before we go into the details of the proof of Theorems 1 and 2 a heuristic argument

concerning the solutions of Eq. (2) is in order. In all three cases Eq. (2) can be viewed as

Newton’s equation for a particle moving in one dimension under the action of the force

2f ðqÞ2 cq0 (the variable x now plays the role of time). The force 2f ðqÞ is conservative

and derives from a potential VðqÞ ¼
Ðq

0 f ðsÞds: If f ðqÞ belongs to Case A, the potential is

monotonic in (0,1), it has its minimum at the point q ¼ 0; and maximum at q ¼ 1: The

second term, i.e. 2cq0 represents a viscous force, and, with this picture in mind the

parameter c represents the viscosity or viscous coefficient. In summary, Eq. (2) is

Newton’s equation for a particle coming down from the top of the potential at q ¼ 1 to the

bottom of it at q ¼ 0 in the presence of a viscous force. If the viscosity (i.e. the parameter c;

which is precisely our object of interest here) is small the particle will oscillate near the

bottom of the well before it settles down at the minimum (i.e. at q ¼ 0). If we increase

the viscosity, we will reach a value for which there will no longer be oscillations. That is,

the particle will come down monotonically from q ¼ 1 to q ¼ 0 (in mechanics this is

commonly known as critical damping). It is intuitively clear that if one increases the

viscosity even further, the particle will also go down monotonically. So, there is a critical

value of c; which we denote by cp; such that for c $ cp; there will be monotonic decreasing

solutions of Eqs. (2) and (3). This fact was proven rigorously by Aronson and Weinberger,

and more importantly, they showed that this critical value cp will be the speed of

propagation of fronts of the reaction–diffusion equation (1) (for a sufficiently localized

initial condition). If f ðuÞ belongs to Case C, the potential has two maxima, at q ¼ 0 and

q ¼ 1; and a minimum at q ¼ a: In this case, the particle starts at q ¼ 1 at time x ¼ 21

and it should get to q ¼ 0 at x ¼ 1 with zero speed. Because of energy dissipation, for this

motion to be possible, the maximum at q ¼ 0 must be smaller than the maximum at q ¼ 1

(otherwise the particle would never reach q ¼ 0). In terms of the force f ; this condition in

the potential implies
Ð1

0 f ðqÞdq . 0: Now, it should be intuitively clear that there is only

one value of the viscosity c for which the particle will go from the maximum of the

potential at q ¼ 1 to the valley at q ¼ a and then up to the maximum of the potential at

q ¼ 0: This is precisely the value cp: If c is larger than cp the particle will be trapped

forever at the valley. On the other hand, if c , cp the particle will overshoot at q ¼ 1: All

these facts have been proven in Ref. [13].

Following the results of Aronson and Weinberger, we are interested in computing the

minimal speed for which Eq. (1) has a monotonic traveling front uðx; tÞ ¼ qðx 2 ctÞ joining
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u ¼ 1 to u ¼ 0: The shape of the traveling front will be determined by the monotonic

solution of Eqs. (2) and (3). Since q is monotone, in order to analyze the solution to

Eqs. (2) and (3), it is convenient to work in phase space. Calling z ¼ x 2 ct; the argument

of q; and pðqÞ ¼ 2dq=dz (here, the minus sign is included so that p is non-negative), we find

that in phase space the monotonic fronts are the non-negative solutions of the following

two-point boundary-value problem,

p
dp

dq
2 cpðqÞ þ f ðqÞ ¼ 0; in ð0; 1Þ; ð11Þ

and

pð0Þ ¼ pð1Þ ¼ 0: ð12Þ

In Ref. [13], Section 4, Aronson and Weinberger proved that there is a unique non-

negative solution p to Eqs. (11) and (12) for c ¼ cp: Moreover, the solution p is such that

pðqÞ < lmlq near q ¼ 0; where lml is the largest root of the equation

x2
2 cpx þ f 0ð0Þ ¼ 0; ð13Þ

i.e.

lml ¼
1

2
cp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp2 2 4f 0ð0Þ

q� �
:

It is convenient to introduce the parameter s as s ¼ cp=lml: In terms of s one can write

cp ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þ=ðs2 1Þ

p
and lml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ð0Þ=ðs2 1Þ

p
: ð14Þ

It is straightforward to verify that whenever 1 , s , 2 the value of lml given by

Eq. (14) corresponds to the largest root of Eq. (13) and therefore to the asymptotic slope

at the origin of the selected front [19]. If s ¼ 2 then cp is given by the linear value

cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
:

Proof of Theorem 1 The proof of the theorem is done in two steps. First, we show that

cp $ J; ð15Þ

and then we show that equality actually holds in Eq. (15). To prove Eq. (15) it is enough

to show that cp $ IðgÞ for all g [ E : Multiply Eq. (11) by g=p; for any fixed g [ E ;

and integrate over q [ ½0; 1�: After integration by parts we have,

cp ¼

ð1

0
ðhp þ ðfgÞ=pÞ dq

ð1

0
g dq

$ IðgÞ; ð16Þ

which follows from the fact that

hp þ
fg

p
$ 2

ffiffiffiffi
fgh

p
;
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since p; h; f ; and g are positive for q [ ð0; 1Þ: To finish the proof we have to show that

the equality holds in Eq. (15). From the results of Ref. [13] it follows that cp $ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
:

We separate the proof that equality holds in Eq. (15) into two cases: Case (i) cp ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
;

and Case (ii) cp . 2
ffiffiffiffiffiffi
f 0ð0Þ

p
: In Case (i), consider the family of functions gaðuÞ ¼ ua21 2 1;

with 0 , a , 1: Then, ga [ E and lima!0 IðgaÞ ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
(see, e.g. the appendix of Ref.

[20] for a detailed proof of this fact). Hence, from Eq. (15) we have

cp $ J $ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
;

which implies J ¼ cp in this case.

In Case (ii), we will not only prove that the equality in Eq. (15) holds but also that there

exists ĝ [ E with cp ¼ IðĝÞ: Let pðqÞ be the positive solution of Eq. (11) satisfying

Eq. (12). The existence of such a solution has been established in Ref. [13]. Moreover,

pðqÞ < lmlq near q ¼ 0: A function ĝ will saturate the bound Eq. (16) if and only if,

hp ¼
f ĝ

p
; ð17Þ

where h ¼ 2ĝ0 and p is the solution of Eq. (11) mentioned above. Eq. (17) is a first-order

ordinary differential equation for ĝ; whose solution can be written in terms of p as

ĝðqÞ ¼
pðqÞ

cp
exp

ðq0

q

cp

p
dq

� �
; ð18Þ

for some fixed 0 , q0 , 1: To complete the argument we only need to show that ĝ [ E :

It follows from Eqs. (17) and (18) that

ĥðqÞ ¼
gðqÞ

cppðqÞ
exp

ðq0

q

cp

p
dq

� �

in (0,1). Moreover, since pðqÞ . 0 in (0,1) and p [ C1ð0; 1Þ we have that ĝ [ C1ð0; 1Þ:

Thus, ĝ is a continuous, positive and decreasing function in (0,1). Hence, ĝ is bounded

away from the origin. In order to show that
Ð1

0 ĝðqÞdq is finite we have to determine the

behavior of ĝ near q ¼ 0: Since p < lmlq near 0, we have from Eq. (18) that

ĝðqÞ <
1

s

1

qs21

near zero. Therefore, if s , 2 (i.e. if cp . cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
; we have

Ð1
0 ĝðqÞdq , 1 and

ĝ [ E : A

Proof of Theorem 2 Now take g [ F : Multiplying Eq. (11) by gðqÞ and integrating over

q [ ½0; 1�; we have, after integration by parts, the equalityð1

0
fgdq ¼ c

ð1

0
pgdq 2

1

2

ð1

0
hp2dq: ð19Þ

For positive c, g, and h; the function wðpÞ ¼ cpg 2 hp2=2 has its maximum at p ¼ cg=h;

and so wðpÞ # c2g2=ð2hÞ: It follows that c2 $ MðgÞ; which implies (setting c ¼ cp if c is

nonunique) that cp2 is no less than the supremum of Eq. (6). Next we show that the equality
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holds for a function ĝ: Notice that the condition p ¼ cg=h is solvable in g and gives the

expression for the maximizer ĝ;

ĝ ¼ exp 2
ðq

q0

c

p
dq

� �
; ð20Þ

with q0 [ ð0; 1Þ: Clearly, ĝ is positive and decreasing, with ĝð1Þ ¼ 0 since p < Oð1 2 qÞ

for q < 1: At q ¼ 0; however, ĝ diverges since the exponent goes to þ1: We must ensure

that the integrals on the right side of Eq. (7) exist. To verify this we recall that in the three

cases, A, B and C, the front approaches q ¼ 0 exponentially [13]. Therefore, near q ¼ 0;

p <
1

2
c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 2 4f 0ð0Þ

q� �
q ; mq:

Thus, from Eq. (10) we obtain ĝðqÞ < q2c=m; near q ¼ 0: Hence, both f ĝ and ĝ2=h diverge

at most as q12c=m near q ¼ 0: Therefore, the integrals on the right side of Eq. (7) exist if

m=c . 1=2: This condition is always satisfied when f 0ð0Þ # 0; i.e. in Cases B and C. In Case

A this condition is satisfied provided c . cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
: This concludes the proof in

Cases B, C, and also in Case A for c – cKPP: Finally, in Case A, if cp ¼ cKPP one can take

the maximizing sequence ga ¼ qa22 2 1; which is in F for 0 , a , 1; and let a! 0:

One can verify that lima!0 MðgaÞ ¼ 4f 0ð0Þ ¼ c2
KPP; and we are done. A

2. Variational principle for the asymptotic speed of fronts of the density-dependent

reaction–diffusion equation

Several problems arising in population growth [21,22], combustion theory (see, e.g.

Ref. [23] and references therein), chemical kinetics [24] can be modeled by an equation

of the form

›u

›t
þ ~7·~j ¼ f ðuÞ;

where the source term f ðuÞ (which depends on the density u) represents net growth and

saturation processes. In general, the flux ~j is given by Fick’s law

~j ¼ 2DðuÞ~7u;

where the diffusion coefficient DðuÞ in general may depend on the density u: In one

dimension this leads to the equation

ut ¼ ðDðuÞuxÞx þ f ðuÞ: ð21Þ

We will assume that the reaction term f ðuÞ [ C1½0; 1� satisfies

f ðuÞ . 0; in ð0; 1Þ and f ð0Þ ¼ f ð1Þ ¼ 0; ð22Þ

(i.e. f is of type A), restrictions that are satisfied by several models. We will first consider

here the case when the diffusion coefficient follows a power law (i.e. DðuÞ ¼ mum21;
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for m $ 1Þ: Thus, the equation we consider here is

ut ¼ ðumÞxx þ f ðuÞ; ð23Þ

with f satisfying Eq. (22). Aronson [21], and Aronson and Weinberger [13] have shown

that the asymptotic speed of propagation of sufficiently localized initial disturbances for

Eq. (23) is the minimal speed cpðmÞ for which there exists a monotonic traveling front

uðx; tÞ ¼ qðx 2 ctÞ joining q ¼ 1 to q ¼ 0: The equation satisfied by q is,

ðqmÞzz þ cqz þ f ðqÞ ¼ 0; ð24Þ

with

qð21Þ ¼ 1; q . 0; q0 , 0 in ð21;vÞq ¼ 0 for z $ v; ð25Þ

where z ¼ x 2 ct: When m . 1 the wave of minimal speed is sharp, i.e. v , 1 [21].

We can also give a variational characterization of the speed cpðmÞ for the density-

dependent reaction–diffusion equation. This is given by the following theorem.

Theorem 2.1 [19,25]. If f is of type A, then,

cpðmÞ ¼ max

2
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
mqm21fgh

q
dq

ð1

0
gdq

0
BBB@

1
CCCA; ð26Þ

where the maximum is taken over all functions g for which the integrals in Eq. (26) exist

and gð0Þ ¼ 1; gð1Þ ¼ 0; and h ¼ 2g0 . 0: Moreover, there is a unique g for which the

maximum is attained.

Proof: We follow the same method as in the proof of Theorem 1. We go to phase space,

but this time we denote pðqÞ ¼ 2qm21dq=dz . 0; which is positive since the selected

speed corresponds to that of a decreasing monotonic front. Then, pðqÞ satisfies

p
dp

dq
2

cp

m
p þ

1

m
qm21f ðqÞ ¼ 0; ð27Þ

with

pð0Þ ¼ pð1Þ ¼ 0; p . 0 in ð0; 1Þ: ð28Þ

Although the wave of minimal speed is sharp and therefore q0ð0Þ , 0; by the definition

of p; we still have pð0Þ ¼ 0: Multiplying Eq. (27) by a function g (such that gð0Þ ¼ 1;

gð1Þ ¼ 0; and h ¼ 2g0 . 0), integrating over q [ ð0; 1Þ; using integration by parts and

the Schwarz inequality as in the proof of Theorem 1 above, we get

cpðmÞ $

2
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
mqm21fgh

q
dq

ð1

0
gdq

0
BBB@

1
CCCA: ð29Þ
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To finish the proof, we need only show that there is a function g for which equality is

obtained in Eq. (29). Equality is obtained in Eq. (29) if

1

m
qm21f ðqÞ

g

p
¼ ph ¼ 2pg0ðqÞ; ð30Þ

which is an ordinary differential equation for g; in terms of p; whose solution can be

written as

gðqÞ ¼
mpðqÞ

cp
exp 2

ðq

q0

cp

mpðq0Þ
dq0

� �
; ð31Þ

where 0 , q0 , 1: Since pð1Þ ¼ 0 and p is positive in (0,1) it follows that gð1Þ ¼ 0:

On the other hand, the function g is bounded at q ¼ 0 as we now show. Call ĉ ¼ cp=m

and FðqÞ ¼ qm21f ðqÞ=m: Then Eq. (27) reads

pp0 2 ĉp þ F ¼ 0; ð32Þ

with Fð0Þ ¼ Fð1Þ ¼ 0 and F0ð0Þ ¼ 0: For this case Aronson and Weinberger [13] have

shown that pðqÞ approaches q ¼ 0 as p ¼ ĉq ¼ cpq=m: Hence, from the differential

equation satisfied by g one can show that g approaches a constant as q ! 0: We can always

normalize this constant to be one by an appropriate scaling of g: Therefore, g [ C1ð½0; 1�Þ

and the integrals on the right side of Eq. (26) exist for g given by Eq. (31). A

As in the case of the nonlinear reaction–diffusion Eq. (1), there is also a second

variational principle in this case. It is given by the following theorem, whose proof is

similar to the proof of Theorem 0.2 above, and we leave it to the reader.

Theorem 2.2 If f is of type A, then,

cpðmÞ2 ¼ 2m max
g

ð1

0
gf ðqÞqm21dq

ð1

0
ðg2

=hÞdq

0
BBB@

1
CCCA; ð33Þ

where the maximum is taken over all functions g for which the integrals in Eq. (33) exist

and gð1Þ ¼ 0; and h ¼ 2g0 . 0: Moreover, there is a unique g (up to a multiplicative

constant) for which the maximum is attained.

As an application consider the case f ðqÞ ¼ qð1 2 qÞ and m ¼ 2 for which the exact

solution is known. Using the variational characterization (Eq. (33)), with the trial function

gðqÞ ¼ ð1 2 qÞ=q; we find

cp2 $ 4

ð1

0
qð1 2 qÞ2dq

ð1

0
ð1 2 qÞ2dq

¼ 1;

the exact value, which is just a reflection of the fact that the maximum is attained precisely
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at this particular g: In addition, due to the existence of the variational principle we may use

the Feynman–Hellmann formula to determine the dependence of cpðmÞ on m or, on

the possible parameters of a general reaction term f : We illustrate this by applying it to the

calculation of dðcpÞ2=dm at m ¼ 2 (i.e. around the exactly solvable case). By the

Feynman–Hellmann theorem, we have from Eq. (33),

dðcpÞ2

dm
¼ 2

ð1

0
ĝf ðqÞ½qm21 þ mðm 2 1Þqm21 log q�dq

ð1

0
ðĝ2

=ĥÞdq

; ð34Þ

where ĝ is the maximizer in Eq. (33). In the case f ðqÞ ¼ qð1 2 qÞ and m ¼ 2; the actual

maximizer is ĝ ¼ ð1 2 qÞ=q; so from Eq. (34) we get

dðcpÞ2

dm

�����
m¼2

¼ 6
ð1

0
ð1 2 qÞ2qð1 þ 2log qÞdq ¼ 2

7

12
; ð35Þ

the value previously obtained by other methods [26,27] (see also Ref. [25] for an

alternative derivation using instead the first variational characterization (Theorem 2.1) and

the Feynman–Hellmann theorem).

Recently, Malaguti and Marcelli [28] have studied the effects of a degenerate diffusion

term in reaction–diffusion models. They study the equation,

ut ¼ ðDðuÞuxÞx þ f ðuÞ; in Rþ £ R; ð36Þ

where both f and D are in C1½0; 1�: Their main result is the following theorem.

Theorem 2.3 [28] Consider Eq. (36) with D and f in C1ð½0; 1�Þ; and the reaction term, f ;

is of type A, while D satisfies, Dð0Þ ¼ 0;D0ð0Þ . 0 and DðuÞ . 0 for all u [ ½0; 1�:

Then, there exists a constant cp such that Eq. (36) has

(a) no traveling wave solutions for 0 , c , cp;

(b) a monotone traveling wave solution of sharp type with wave speed cp:

(c) a monotone traveling wave, q; of front type, with qð21Þ ¼ 1 and qðþ1Þ ¼ 0; for

every wave speed c . cp:

Moreover, it holds that

0 , cp #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup

q[ð0;1�

DðqÞf ðqÞ

q

s
: ð37Þ

Finally, for all c $ cp the wave front, respectively of front or sharp-type, is unique up to

translations.

As before, we can characterize the value of cp of Theorem 2.3 by the following

variational principle.
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Theorem 2.4 Let D and f as in Theorem 2.3, then,

cp ¼ 2 sup
g

ð1

0

ffiffiffiffi
fgh

p
dq

ð1

0
gdq

0
BBB@

1
CCCA; ð38Þ

where h ; 2DðuÞg0ðuÞ; and the sup is taken on the set of functions g; such that g [
C1ð½0; 1�Þ; g . 0 in ð0; 1Þ, gð1Þ ¼ 0; and h . 0 in ð0; 1Þ.

Remarks 2.5 (i) the proof of this theorem is analogous to the proof of Theorems 1 and 2.1

above and we omit it here. (ii) Using the convexity of the mapping, t !
ffi
t

p
; Jensen’s

inequality, and integration by parts we can obtain the bound (Eq. (37)) directly from our

variational principle (Eq. (38)).

3. Variational calculations for thermal combustion waves

In the simplest model of thermal propagation of flames one is led to the 1D reaction–

diffusion Eq. (1), where typically the reaction term is given by the Arrhenius law, which in

a reduced version is given by

f ðuÞ ¼ ð1 2 uÞr½ebðu21Þ
2 e2b�; ð39Þ

(see, e.g. Refs. [5,23]) where the term expð2bÞ is introduced to remedy the cold-boundary

problem [4,29]. The degree of localization of the reaction zone is measured by the

Zeldovich number b: For large values of b; the width of the reaction zone is narrow and

the speed of propagation of the flame is given by the Zeldovich–Frank–Kamenetskii

(ZFK) formula [5],

cZFK ¼ 2
ð1

0
f ðuÞdu

� �1=2

; ð40Þ

which is the exact value in the limit b!1: On the other hand, for b , 2 the reaction

term is concave and the speed of the flame is given by the KPP value

cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
: ð41Þ

Realistic values of b lie between these two extremes. Corrections to the ZFK

formula have been obtained by means of asymptotic expansions in the parameter 1=b

[29]. Often the prescription has been [4] to take the larger value between cZFK (or its

corrections) and cKPP as the best approximation to the correct value of the speed. We

have used the variational principle given by Theorem 1 above to compute several

simple analytic formulas that reproduce the numerical value of the speed of the flame

for a wide range of the parameter b [30]. We have also used the variational principle

(1) to prove that cZFK is always a lower bound for any reaction term of type A [19,30]

(a different proof of this fact has been given directly from the ordinary differential
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equation by Berestycki and Nirenberg [31]). For completeness we reproduce here the

proof of this lower bound.

Theorem 3.1 ([19,30,31]). For any reaction term f ðuÞ of type A, the selected speed of

propagation of sufficiently localized initial conditions satisfies,

cp $ cZFK ; 2
ð1

0
f ðuÞdu

� �1=2

; ð42Þ

Proof: Choose as a trial function,

gðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð1

q
f ðsÞds;

s
ð43Þ

in Eq. (5). Clearly this function is in E :

With this choice we obtain

ð1

0

ffiffiffiffi
fgh

p
du ¼

ð1

0
f ðuÞdu; ð44Þ

and we have that

ð1

0
gðuÞdu ¼ 2

ð1

0
g0ðuÞudu # 2

ð1

0
g0ðuÞdu ¼ gð0Þ; ð45Þ

since gð1Þ ¼ 0: Replacing Eqs. (44) and (45) in Eq. (5) we obtain,

c $ 2

ð1

0
f ðuÞdu

gð0Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ð1

0
f ðuÞdu

s
¼ cZFK; ð46Þ

i.e. the minimal speed is always greater than or equal to the ZFK value. A

Using the variational principle one can get an approximation to the minimal speed of

the flame, which is a much better approximation than the cZFK value for intermediate

values of the Zeldovich parameter.

Defining, rðxÞ ¼
Ð1

x f ðuÞdu; taking g ¼ rn as a trial function in Eq. (5), and optimizing

in n; we are led to the following lower bound on the minimal speed [30]

c $
4

ffiffi
n

p

2n þ 1

ð1

0
f ðuÞdu

� �nþ1=2

ð1

0
uf ðuÞdu

� �2
; ð47Þ

for any n [ ð1=2; 1Þ and for any reaction term of type A. The n that maximizes this lower
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bound is either

n ¼
1 2 logðgÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½logðgÞ2 1�2 2 4logðgÞ

p
4logðgÞ

; ð48Þ

when the right side of Eq. (48) is real, where

g ¼

ð1

0
f ðuÞdu

ð1

0
uf ðuÞdu

;

or n ¼ 1 otherwise [30].

4. Minimal speed of fronts for reaction–convection–diffusion equations

In many processes, in addition to diffusion, motion can also be due to advection or

convection. Nonlinear advection terms arise naturally in the motion of chemotactic cells.

In a simple 1D model, denoted by r the density of bacteria, chemotactic to a single

chemical element of concentration sðx; tÞ the density evolves according to

rt ¼ ½Drx 2 rjsx�x þ f ðrÞ; ð49Þ

where diffusion, chemotaxis and growth have been considered. There is some evidence

[32] that, in certain cases, the rate of chemical consumption is due mainly to the ability of

the bacteria to consume it. In that case,

st ¼ 2kr;

where diffusion of the chemical has been neglected (arguments to justify this

approximation, together with the choice of constants D and j are given in Ref. [32]). If

one looks for traveling-wave solutions, s ¼ sðx 2 ctÞ; and r ¼ rðx 2 ctÞ; then st ¼ 2csx;

and thus, sx ¼ kr=c; and the problem reduces to a single differential equation for the

density r; namely

rt ¼ Drxx 2 j k
c
ðr2Þx þ f ðrÞ: ð50Þ

For a discussion about the recent literature on the subject, see, e.g. Ref. [20] and

references therein.

Motivated by the previous model, in this section we will consider the equation with a

general convective term that, suitably scaled, we write as

ut þ mfðuÞux ¼ uxx þ f ðuÞ; ð51Þ

where the reaction term is of type A. The function fðuÞ [ C1ð½0; 1�Þ: Without loss

of generality we may assume fð0Þ ¼ 0; since otherwise only a uniform shift in

the speed is introduced. The parameter m is positive. For Eq. (51), the existence

of monotonic decaying traveling fronts, uðx 2 ctÞ for any wave speed greater than a

critical value cp was proven recently by Malaguti and Marcelli [33]. In Ref. [33],
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the following estimate on cp was derived,

2
ffiffiffiffiffiffi
f 0ð0Þ

p
# cp #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup

u[½0;1�

f ðuÞ

u

s
þ max

u[½0;1�
mfðuÞ: ð52Þ

Analogous results for density-dependent diffusion have also been established in

Ref. [33]. The convergence of some initial conditions to a monotonic traveling front

has been proven by Crooks [34] for systems for which the minimal speed is greater

than the linear value cKPP ¼ 2
ffiffiffiffiffiffi
f 0ð0Þ

p
:

We have recently derived a variational characterization for the minimal speed cp of

monotonic traveling front solutions of Eq. (51) [20]. Let

IðgÞ ¼

ð1

0

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðuÞgðuÞ½2g0ðuÞ�

p
þ mfðuÞgðuÞ

�
du

ð1

0
gðuÞdu

ð53Þ

defined over the set S of positive, monotonic decreasing functions gðuÞ; in C1ð½0; 1�Þ; with

gð1Þ ¼ 0: Then we have

Theorem 4.1 ([20])

cp ¼ sup
g[S

IðgÞ: ð54Þ

Remarks 4.2 (i) Using the variational principle (54), Jensen’s inequality and integration

by parts one can derive the upper bound Eq. (52) [20]. (ii) From the variational principle

Eq. (54) it is also possible to show that a sufficient condition for cp to be equal to the linear

value cKPP is

f 00ðuÞffiffiffiffiffiffi
f 0ð0Þ

p þ mf0ðuÞ , 0;

for all u [ ð0; 1� [20].
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