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Monte Carlo simulations of hysteresis loops of FeF2s110d /Fe bilayers were carried out. A large number of
steps(360,000 steps/site) and a slow cooling schedule were implemented to ensure that quasi-equilibrium was
reached at each temperature. The exchange bias fieldsHEd at low temperature was calculated from the shift of
the hysteresis loop center away fromH=0. HE,0 was obtained for unequal exchange interactions between
each antiferromagnetic sublattice and the ferromagnet. This puts forward a novel mechanism to break the
spatial reversal symmetry, which is necessary to generate an exchange bias. Moreover, an effective perpen-
dicular anisotropy was induced in the ferromagnet for large values of the interface exchange interactions. These
results explain some of the reported experimental observations for FeF2 exchange bias systems, both in
thin-film and single-crystal forms, and are consistent with previous theoretical work.
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I. INTRODUCTION

The phenomenon of exchange anisotropy has attracted
much attention in recent years, both due to the basic chal-
lenge of developing a physical understanding of exchange
anisotropy and to its application in magnetic sensor and mag-
netic media technology.1,2 The phenomenon is characterized
by a shift of the center of the ferromagnetic hysteresis loop
away from zero field by an amount known as the exchange
bias field HE. Exchange anisotropy is due to the magnetic
interactions at the interface between a ferromagnet(FM) and
an antiferromagnet(AF) or ferrimagnet. Recently, the anti-
ferromagnet FeF2 has been extensively investigated in this
context, which provided important clues1,3 on the basic
mechanism responsible for exchange bias(EB). Iron fluoride
forms in the rutile tetragonal crystal structure. As a result of
single-ion anisotropy and the anisotropic crystal-field, the
Fe2+ ions experience a very strong uniaxial magnetic aniso-
tropy along the[001] c-axis. In principle, this should sim-
plify the data analysis, since there is a single AF easy-axis
and thus the magnetic ordering at low temperatures should
be unique. Nevertheless, some apparently contradictory data
have been reported.4–7 For example, single-crystalline
FeF2s110d thin films with Co overlayers show that the cou-
pling is along the in-plane[001] direction, which coincides
with the effective magnetic anisotropy direction of the ferro-
magnetic film.4,5 In contrast, experiments with macroscopic
FeF2 single-crystals with Fe overlayers, have shown that the
FM couples to the AF in a direction perpendicular6,7 to the

c-axis (i.e., thef11̄0g direction).
Recently Monte Carlo(MC) simulations of AF/FM bilay-

ers have been performed to develop an understanding of ex-
change bias from a more fundamental point of view.8–11

Some of this work8,9 was aimed at determining whether non-
magnetic impurities in the AF can enhance EB, as has been
observed experimentally.8,12 These experiments were per-
formed on Co/CoxMg1−xO bilayers with a thins0.4 nmd

layer of pure CoO at the interface, presumably to obtain
identical interfaces, regardless of the Mg impurity concentra-
tion. On the other hand, the MC simulations8,9 were carried
out for a system with a 50% dilute CoO monolayersx
=0.5d at the interfacein order to induce, within the bulk of
the antiferromagnet, a net exchange bias for all concentra-
tions. This was done because the simulations assume a com-
pensated antiferromagnetic surface(that is, two equivalent
AF magnetic sublattices are present yielding a zero net mo-
ment). Having a pure layer at the interface, as in the experi-
ments, would yield zero exchange bias. It is important to
notice that previous experimental work on dilute FexZn1−xF2
antiferromagnetic films with Co overlayers has also demon-
strated that there is an enhancement ofHE, as long as the
pure layer is deposited at the interface, but this enhancement
disappears nontrivially(that is, it does not scale inversely
with the film impurity concentrationx) if the pure layer is not
deposited at the interface.13 An additional complication is
that the maximum exchange bias enhancement for
Co/CoxMg1−xO bilayers occurs8,12 for x=0.9, whereas MC
simulations find the peak atx=0.4. Therefore, it seems that
MC simulations can yield qualitatively correct results, al-
though important quantitative discrepancies remain which
still need to be sorted out.

In this work we simulate FeF2s110d/ferromagnetic bilayer
films using MC simulations. The advantage of this system is
that the easy axis is well defined(it is the [001] direction)
and the exchange and anisotropy constants of FeF2 are well
known and hence it is an ideal candidate to test fundamental
theories using the MC formalism. For example, FeF2 has
been used in the past to test finite-size scaling theories by
comparing experimental data with MC simulations.14 In this
paper we calculate the magnetic properties of the FM as a
function of the interface exchange interaction. We demon-
strate that we obtainHEÞ0, provided that the magnetic ex-
change coupling constants between the ferromagnet(FM)
and the two antiferromagnetic(AF) sublattices are different.
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This constitutes a novel mechanism to break the spatial re-
versal symmetry, which is required to generate exchange
bias.

The microscopic origin of the symmetry breaking mecha-
nism that generates exchange bias is also an unresolved
question. Recently Schulthess15 suggested that the
Dzyaloshinsky-Moriya interaction16 is a possible symmetry
breaking mechanism, and that for the Fe3O4/CoO system it
has the correct order of magnitude. In this contribution we
find that an effective magnetic anisotropy is generated in the
FM, for large values of AF/FM interface exchange constant.
This is consistent with earlier theoretical work that demon-
strated the existence of perpendicular coupling for compen-
sated surfaces,17,18 although the strength of the interface ex-
change required for this to occur was not explored.

II. DESCRIPTION OF THE MODEL

Figure 1 illustrates the lattice geometry. Thez-axis corre-
sponds to the growth direction of(110) FeF2 films, and the
x-axis represents the FeF2 [001] direction, which is also the
easy axis of the AF. Notice that each(110) plane is fully
compensated. The antiferromagnetic film was modeled by
two 16316316 interpenetrating sublattices. The FM had
the same body-centered cubic structure as the AF, and its size
was twice 1631634. Periodic boundary conditions were
established parallel to thex−y plane, with free boundary
conditions along thez-axis, as illustrated in Fig. 1. The simu-
lations were carried out using the importance sampling Me-
tropolis algorithm and a checkerboard procedure that takes
full advantage of the fact that only a nearest-neighbor ex-
change is assumed(no dipole interactions were taken into
account).19 The calculations were carried out during 360,000
steps per site, discarding the first 280,000 and averaging the
remainder to ensure proper thermalization.

A few runs were also made with 32332 spins per sublat-
tice in thex−y plane to verify that the results did not change
the conclusions of this paper. For these larger lattices, the
FM magnetization exhibited qualitatively less fluctuations

after more MC steps, but this did not alter qualitatively the
relevant results.

The Hamiltonian for the system is

H = − JAF o
ki,jlPAF

Si ·Sj − Ao
iPAF

Six
2 − JFM o

ki,jlPFM

Si ·Sj

− gmB o
iPAF

H ·Si − gmB o
iPFM

H ·Si + JI1 o
kiPAF,jPFMl

Si1 ·Sj

+ JI2 o
kiPAF,jPFMl

Si2 ·Sj . s1d

The terms on the right-hand side represent the exchange
interaction between AF spins, the AF uniaxial anisotropy, the
exchange interaction between FM spins, the Zeeman interac-
tion, and the exchange interaction between AF and FM spins
at the interface, respectively.A is the anisotropy constant and
JI1 andJI2 describe the exchange between the FM spins and
the spins belonging to the first and second AF sublattice,
respectively. All exchange interactions are between nearest
neighbors only, denoted byk¯l in the summations. Notice
that no FM intrinsic anisotropy is included, which is a rea-
sonable assumption because it is very small when compared
to A and because the FM films grown on FeF2 are usually
polycrystalline. Hence, any anisotropy that appears in the
FM must result from the interface exchange. In essence, the
above model is a fully three-dimensional Heisenberg Hamil-
tonian with single-ion anisotropy in the antiferromagnet.

The parameters20 used for the AF were those of bulk
FeF2: JAF=−20.92 K, A=37.13 K, with SAF=1, where the
spin is assumed to be a unit vector. Notice that in realityS
=2 for FeF2, so thatJAF is an effective exchange interaction
that corresponds to the realJ multiplied by S2. Also notice
that the large anisotropy of FeF2 could have allowed us to
use a simpler Ising Hamiltonian for the antiferromagnet, as
implemented for the simulations of the CoO system,9 but we
wanted to investigate the possible formation of AF domain
walls. Moreover, this procedure will also allow us to simu-
late, in the future, systems with lower anisotropy such as
MnF2. The ferromagnetic spins are also unit vectors with an
exchangeJF=200 K, which is lower than the effective ex-
change in Fe or Co, but still significantly larger thanJAF.
This made the ferromagnetic magnetization easier to reverse
at low temperatures, lowering the coercive field. The ex-
change bias was determined as a function ofJI1 andJI2 for
JI1=JI2 and forJI1−JI2=5 K. The latter case yields values of
HE comparable to those observed in real experiments with
single-crystal FeF2 thin films when scaled by the inverse of
the FM thickness and the inverse of the FM magnetization.4,5

The difference between the two AF sublattices at the inter-
face may be due to the direction of the FvFevF bonds
which are different for the two sublattices. For one sublattice
the bonds point out of the plane, while for the other it is in
the plane.21 It is important to notice that this has nothing to
do with extrinsic roughness. Steps on the surface, for ex-
ample, would not alter this fact, because the inequality of the
two sublattices is intrinsic and has to do with a difference in
the symmetry of the fluorine ions, as shown in Fig. 2. This is
true as long as the terraces are large enough so that interac-
tions at step edges can be ignored.

FIG. 1. Representation of the cells used for the simulations. The
axes are indicated in the figure. Thes andP represent the two AF
magnetic sublattices and the dotted lines indicate the nearest-
neighbors. The magnetic spin ordering corresponds to the bulk AF
at low T.
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A major difficulty is encountered when attempting to find
the lowest energy state, especially at low temperatures, be-
cause of the nature of the Heisenberg model. This manifests
itself in very large coercivity values, making an accurate
determination ofHE quite difficult. We addressed this issue
via a two-pronged approach:(i) a very large number of time
steps was used(360,000/site); and(ii ) the sample was cooled
in small temperature stepss5 Kd in order to maintain thermal
quasi-equilibrium during the cool-down procedure. This
meant that for every single 5 K temperature step 360,000
steps/site(with the cooling field on) were performed in order
to thermalize the sample. The sample was cooled fromT
=100 K to T=20 K. All hysteresis loops were computed at
T=20 K. Different cooling field values were investigated in
the range between 0.01 T and 10 T. We found that the cool-
ing field was not a significant factor in determiningHE

within our simple model. The data presented below were
obtained with a 10 T cooling field applied along the +x di-
rection.

The uncertainty of the component of the magnetization
along H,Mx, was estimated from the standard deviation of
the values that were averaged to determineMx. Near satura-
tion sMx,1d the uncertainty was small,ssMxd<0.002. In
the regions whereMx approached zero, the uncertainty was
much larger, of the order ofssMxd<0.04. The latter uncer-
tainty is approximately equal to the size of the symbols in
Figs. 4 and 7 seen later.

The code was parallelized using the message-passing in-
terface(MPI)22 implementations on an IBM SP at UCSD and
the CRAY at IPICYT. The scalable library for pseudorandom
number generation(SPRNG) was used to generate pseudo-
random numbers in the parallel environment.23 Since a
checkerboard algorithm was used, each sublattice could be
updated in parallel.

III. RESULTS AND DISCUSSION

A. Antiferromagnetic ordering

Figure 3 shows the value of thex-component of the stag-
gered magnetization(order parameter) of the AFM sMAF

=M1x−M2xd as a function of temperature, as measured dur-
ing the cool-down procedure. The change in sign ofMAF
indicates that the antiferromagnetic configuration was re-
versed by 180° with respect to the positive values. We find
that the Néel temperature isTN,60 K. This value is differ-
ent from the known bulk FeF2 Néel temperature24 of TN
=78.4 K. This discrepancy is not surprising given that our
calculation is based on a classical Heisenberg Hamiltonian
using a classical Monte Carlo procedure, which adds addi-
tional degrees of freedom that reduce the ordering tempera-
ture of the AFM. Also notice that for the case where a net
interface coupling is presentsJI1.JI2d TN appears to be
slightly enhanced, to perhaps as high a value asTN=65 K.
Although the error bars do not permit a definite conclusion
about this matter(and indeed this is not the main point of
this paper), this is consistent with previous experimental25

and Monte Carlo studies10 of exchange biased systems. In
both the experimental and Monte Carlo results this was ex-
plained by the FM inducing long-range order on the AFM,
above its decoupled Néel temperatureTN, when there is a net
coupling with the ferromagnet.

B. JI1=JI2: Induced perpendicular coupling

WhenJI1=JI2;JI our simulations reveal that there is no
exchange biassHE=0d. Figure 4 illustrates the hysteresis
loops of the FM as a function ofJI. Clearly, asJI increases
the loops become increasingly sheared. In experimental data
this can be a consequence of an anisotropy perpendicular to
the the applied field. Because they and z directions in our
calculations are equivalent, the ferromagnet rotates uni-
formly either in the plane or out of the plane. Figure 5 is a
graph of the magnitude of the component ofM perpendicular
to Mx, i.e.,Myz=ÎMy

2+Mz
2. Except forJI /JAF=0.28,Myz has

no hysteresis and has a maximum nearH=0, clearly demon-

FIG. 3. Staggered magnetization of the antiferromagnet as a
function of temperature. HereDJI ;JI1−JI2. MAF is plotted in units
of gmB=1. Inset: Semi-log graph ofMAF for samples with different
lateral sizes, 16316 sPd and 32332 ssd, with the same thickness
as all the other samples. Error bars correspond to standard deviation
of the averagedMAF measurements.

FIG. 2. Sketch of FeF2 structure projected ons11̄0d plane. The
Fe2+ ions are represented bys and the F1− ions byP. The dotted
line represents the surface, including a monoatomic step. The ar-
rows represent the low temperature magnetic configuration of FeF2,
and also distinguish the two sublattices from each other. Notice that
the sublattice with the Fe ions with spins pointing to the right have
F ionic bonds pointing perpendicular to the surface, whereas the
ones with spins pointing to the left have F bonds in the plane of the
surface, regardless of the atomic step.
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strating that in the vicinity ofH=0 the magnetization is in-
deed perpendicular to thex-axis. For theJI /JAF=0.28 case
there is significant hysteresis, and therefore there are two
peaks inMyz: one corresponding to the case whereMx=0
while decreasing the external field, and the other correspond-
ing to the case whereMx=0 while increasing the field. In this
case the induced perpendicular anisotropy is not strong
enough to force the spins perpendicular to thex-axis at low
fields.

Regarding the possibility of finding domain walls in either
the antiferromagnet or ferromagnet, we notice that no do-
main walls were observed in the ferromagnet. This makes
sense given that the intrinsic anisotropy of the ferromagnet in
our model was set to zero, which results in an infinitely large
domain wall, and that long-range dipolar interactions are also
not taken into account. In the antiferromagnet we were able
to observe, in one of our runs, the formation of a domain
wall running parallel to the interface below the ferromagnet/
antiferromagnet interface, only one unit cell wide. The small

thickness of the domain wall is also expected from a calcu-
lation of the domain wall thickness, usingd=pÎAAF/KAF,
whereAAF= uJAFu /a=20.92 K/a is the exchange stiffness and
KAF=2A=74.26 K/a3 the anisotropy energy, using the pa-
rameters for FeF2 and taking into account a bcc crystal struc-
ture (2 atoms/unit cell), with a being the lattice constant.
This leads tod=1.7a, so that the domain wall thickness is
not expected to be much larger than one or two lattice spac-
ings. However, the formation of the domain wall does not
seem to affect the results relating to the magnetic response of
the ferromagnet to an external field, perhaps because the
large anisotropy in the antiferromagnet prevents the wall
from being removed at low temperatures for the external
fields used in our simulations. A relaxation of the domain
wall would lead to a change in the sign ofHE because of the
entire reversal of the antiferromagnetic moments at the inter-
face. However, it is possible that relaxation of such a domain
wall is important in other systems, such as those with mag-
netic impurities, where changes in the sign ofHE as a func-
tion of temperature have been observed.26

It is possible to quantify the effective magnetic anisotropy
energy UA,eff by the standard method of determining the
missing area under theM ·H curve,27 such that(in SI units)

UA,eff = m0SHSMS−E
0

HS

MxsHddHD , s2d

wherem0 is the permeability of free space,HS is the field at
which Mx saturates, andMS=MF is the saturation magneti-
zation. Figure 6 shows the result of such a calculation in
units of the effective anisotropy fieldHA,eff;UA,eff/m0MF.
The error bars in the figure are due to the uncertainty in
determiningHS from Fig. 4. The effective anisotropy field
appears to increase asJI grows from zero and begins to satu-
rate at a value ofJI /JAF,1.

This induced anisotropy makes sense in terms of the rap-
idly changing sign of the interface exchangeJISAF at low
temperatures from one interface antiferromagnetic site to the
next. Slonczewski found analytically that an exchange inter-

FIG. 4. x-component of the ferromagnetic magnetization vs the
applied field, forJI1=JI2;JI. MFx is plotted in units ofgmB=1.

FIG. 5. Magnetization component of the ferromagnet perpen-
dicular to the antiferromagnetic easy axis(x-axis) as a function of
field for JI1=JI2;JI. The lines are guides to the eye.

FIG. 6. Normalized effective anisotropy energy generated by the
interface interaction as a function of the interface exchange energy
JI1=JI2;JI ssd andJI1−JI2=5.0 K, with sJI1+JI2d /2;JI sPd. The
continuous line corresponds to Slonczewski’s model withMF

=MAF=1 and the dashed line to the same model but using the
Monte Carlo-computed values ofMF andMAF.
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action between two ferromagnetic layers that varies in space
very rapidly, for example, for Fe layers separated by Cr with
step disorder, results in biquadratic or perpendicular coupling
between the layers.28 This is because competing exchange
interactions cause frustration, which leads to a perpendicular
configuration as long as the spatial variation period of the
exchange interaction is smaller than the domain wall thick-
ness of the ferromagnet. The same idea can be applied to the
antiferromagnetic/ferromagnetic bilayers simulated here. The
interface ferromagnetic spins can also be divided into sublat-
tices, each of which at low temperatures interacts with an
antiferromagnetic sublattice. Therefore, it is possible to map
the effective exchange at the interface onto a one-
dimensional variation of the sign of the effective interface
exchange along they-axis because the AF sublattices point
almost antiparallel to each other. Because of this, one can use
Eq. (7) of Ref. 28 to calculate the effective perpendicular
anisotropy energy. Specifically, the minimum energy per unit
area is

UA = − 8−1o
kÞ0

sJk/kd2sAAF
−1 coth ktAF

+ AF
−1coth ktFdsin2sūAF − ūFd, s3d

where Jk is a Fourier component of the effective interface
exchange energy per unit area,k is the Fourier component’s
wavevector,AAF and AF are the exchange stiffnesses of the
antiferromagnet and ferromagnet, respectively, andtAF andtF
are the thicknesses of the antiferromagnetic and ferromag-
netic layers, respectively. In our case,AAFsFd
= uJAFsFd uMAFsFd

2 /a, taking into account the bcc lattice struc-

ture, andūAFsFd are the average angles that the magnetization
(or sublattice magnetization for the AF) makes with respect
to thex-axis. In our case, the effective exchange interaction
per unit area varies along they-axis as JI,eff
=2JIMFMAF sgn(sins2py/ad) /a2, the factor of 2 coming
from our bcc lattice structure where each ferromagnetic spin
at the interface couples to two interface antiferromagnetic
spins. We thus obtain a result similar to Eq.(9) in Ref. 28,
namely that

UA =
4MF

2MAF
2 JAF

2

p3a2 S 1

MF
2uJFu om=1

`
cothfps2m− 1d2tF/ag

s2m− 1d3

+
1

MAF
2 uJAFu om=1

`
cothfps2m− 1d2tAF/ag

s2m− 1d3 DS JI

JAF
D2

.

s4d

(Notice that in the notation of Ref. 28,UA=2uB12u and a
=2L.) In our case,tF=3a andtAF=15a which makes the coth
terms in the sums<1. Since the first term in the series of Eq.
(4) dominates, we have that

UA =
4MF

2MAF
2 JAF

2

p3a2 S 1

MF
2uJFu

+
1

MAF
2 uJAFuDS JI

JAF
D2

. s5d

To transform the biquadratic interface anisotropy energy
UA to an effective anisotropy field, we notice that the differ-
ence in energy per unit area in switching the ferromagnetic

magnetization by 90° from thex axis is UA=m0HA,effMFtF.
Using our values ofJAF=−20.92 K andJF=200 K, andMF
=MAF=1, the induced anisotropy field in Fig. 6 should vary
as HA,eff=UA/m0MFtF=CsJI /JAFd2, with a prefactor C
=0.95 K=0.71 T, assuming ag-factor equal to 2. The solid
curve in Fig. 6 represents this result. If instead one uses the
computed values ofMF andMAF for each case, one obtains
the slightly different result represented by the dashed line in
Fig. 6. The agreement between the computational and ana-
lytical results is extremely good for small values ofJI /JAF.
For larger values ofJI /JAF there is a significant discrepancy
because the magnetization of the ferromagnet is strongly
coupled to the antiferromagnetic sublattice magnetization,
and hence Slonczewski’s model is no longer valid.

C. JI1ÅJI2: Exchange bias

For the cases whereJI1ÞJI2, HEÞ0. In Fig. 7 we show
hysteresis loops forDJI =JI1−JI2=5 K for different values of
interface exchangeJI1. The exchange bias, as measured by
the shift of the center of the hysteresis loops, appears to
decrease slightly asJI1 is increased, as shown in Fig. 8.

It is interesting to compare this value with the effective
exchange bias field assuming that it is only due toDJI. This
is given by

HE =
DJI

2tFMFm0
. s6d

With tF=3 unit cells, we have thatHE=0.64 T, regardless of
DJI, as illustrated by the dashed line in Fig. 8. Clearly this
simple calculation gives the correct order of magnitude for
HE, although there is a slight dependence onDJI in the com-
putational data. The origin of this effect may be a result of a
subtle response of the ferromagnet and antiferromagnetic
structure to the interface exchange, or it could be due to
finite size effects. A further study is necessary to fully clarify
this matter.

FIG. 7. Thex component of the ferromagnet’s magnetization as
a function of the applied field forJI1−JI2=5.0 K. MF is in units of
gmB=1.
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As in theJI1=JI2 case, an increasing effective perpendicu-
lar magnetic anisotropy asJI1 increases is also found for
JI1ÞJI2. This is illustrated in Fig. 9, which shows the mag-
netization perpendicular toMx as a function ofH. The fer-
romagnetic spins clearly align themselves perpendicular to
the antiferromagnetic easy axis near theH=HE value. The
anisotropy can be determined using the same method as for
the JI1=JI2 case. The results are shown in Fig. 6 withsJI1

+JI2d /2;JI. These data agree well with the data obtained for
the JI1=JI2 case. Hence, we conclude that the origin of the
perpendicular anisotropy is the same in both cases.

IV. CONCLUSIONS

By implementing Monte Carlo simulations of the
FeF2s110d/ferromagnetic bilayer system, we have demon-
strated that exchange bias is generated when the AF sublat-
tices have an unequal exchange coupling with the ferromag-
net. The difference between the two coupling constants
required to generate this anisotropic exchange can be quite
small, i.e.,uJI1−JI2u ! uJI1u. Our MC simulations also demon-
strate that the ferromagnet orders perpendicular to the in-
plane[001] easy axis of the antiferromagnet for large values
of interface exchange, regardless of whether or not there is
unequal sublattice interface exchange. This is in agreement
with previous theoretical calculations,29,30 although our
simulations quantify the amount of exchange necessary for
the perpendicular ordering to occur.

Our simulations may also settle contradictory data ob-
tained from single crystals and epitaxial films.4–7 In (110)

FeF2 single crystals, with thin Fe overlayers, a perpendicular
anisotropy with little or no exchange bias has been observed
at low temperatures,6,7 whereas in epitaxial single-crystal
films with Co overlayers longitudinal anisotropy with a large
exchange bias is observed.4,5 Our simulations indicate that
this could be due to a stronger overall exchange between the
antiferromagnet and the ferromagnet for the single crystal,
which would result in the perpendicular anisotropy. The lack
of exchange bias in the single crystal could be due to a very
small (or zero) value of the differenceuJI1−JI2u, whereas the
opposite must occur in the films. While the first-principles
reason for this is unclear, its cause may be related to surface
reconstruction, small changes in the interface stoichiometry,
or interface disorder. Additional interface structural data may
be helpful in settling this issue.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussions with Pro-
fessor Aldo Romero of the Instituto Potosino de Investi-
gación Científica y Tecnológica(IPICyT), México. Comput-
ing time was provided by the San Diego Supercomputer
Center and the IPICYT. This work was performed while D.L.
was on sabbatical leave at the Pontificia Universidad
Católica de Chile in Santiago, partially funded by the Chil-
ean Ministry of Education project MECESUP. Part of this
work was done while Professor Ramírez was a visiting
scholar at the University of California–San Diego, working
in collaboration with Professor I. K. Schuller and funded by
DOE. Part of the work at UCSD was also funded by NSF.

FIG. 9. Magnetization component of the ferromagnet perpen-
dicular to the antiferromagnetic easy axis(x-axis) as a function of
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solid line is a guide to the eye.
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