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Small Pd clusters: A comparison of phenomenological and ab initio approaches
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The lowest-energy structures of small Pd clusters (2<N<13) are computed by means of available phenom-
enological many-body potentials and by ab initio methods. The lowest-energy configuration is found by means
of a genetic algorithm search. Satisfactory agreement between the results of the several methods implemented
is achieved. Of special interest is the fact that all phenomenological potentials yield the same symmetry group
for the lowest-energy cluster geometries, which moreover are identical with ab initio results. This constitutes
an indication that the most common many-body empirical potentials can be trusted to yield reliable results.

DOI: 10.1103/PhysRevB.72.115421

Clusters have recently attracted much attention due to
their interest to basic science and because of their many
present and potential technological applications.! In part the
interest derives from the insights that clusters and nanopar-
ticles provide into the evolution of physical and chemical
properties between the atomic and molecular limits, on the
one hand, and the bulk limit on the opposite extreme. On the
more applied side, Fe clusters promote the nitrogen plus hy-
drogen conversion into ammonia and platinum clusters cata-
lyze the process to increase the octane grade of gasoline.
Palladium, in particular, is used to create catalytic lattices’
and, because of its almost full d band, has unusual magnetic
properties.

However, an ongoing controversy exists as to the
minimum-energy configurations of metallic clusters.>* In
fact, often different ab initio implementations yield different
geometries which barely differ in energy.* Since these ab
initio calculations become quite formidable as the number of
atoms in the cluster grows, the use of empirical potentials, in
combination with efficient search algorithms, becomes an ef-
fective tool in the quest for the most stable cluster geometry.
However, the use of empirical potentials is conditioned by
the accuracy with which they yield the most stable
(minimum-energy) structures. On the other hand, they have
the advantage of allowing one to undertake molecular-
dynamics calculations involving large clusters and even their
collisions.’

Within this context this paper has a variety of objectives:
(i) to contrast results obtained with the different available
phenomenological potentials, (ii) to implement a powerful
and efficient minimization procedure to compute the global
energy minimum, and (iii) to compare the results obtained by
the different approaches and contrast them, whenever fea-
sible, with results available in the literature and with our own
first-principles data.

On the other hand, it is also important to keep in mind
that metals are not properly described by pair potentials. The
many-body embedded-atom method (EAM) was put forward
as an alternative to the use of the pair potential and assumes
that each atom in a solid can be viewed as an impurity em-
bedded in a host, which comprises all the rest of the atoms,
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so that the total electron density is approximated by the su-
perposition of electron densities of individual atoms.®” Thus,
the electron density in the vicinity of each atom can be writ-
ten as the sum of the local density plus the electron densities
due to all the surrounding atoms. By making the simplifying
assumption that this background density is constant,’ an
embedding energy is defined as a function of the background
electron density for each particular atomic species.

Phenomenological potentials have been used extensively
since they were introduced in the mid-1980s. Possibly the
first successful attempt is due to Foiles, Baskes, and Daw?®7
(FBD), who put forward the formalism known as the EAM.
This formalism was improved upon by Voter and Chen®
(VC). Other formalisms, different from the EAM, were put
forward by Gupta®'? (G), Sutton and Chen'' (SC), and, more
recently, Murrell and Mottram'>!3 (MM). All of them use
many-body potentials, which were fitted to experimental re-
sults, like the cohesive energy, lattice parameters, and inde-
pendent elastic constants for the bulk 0-K crystal structure.
In addition, we also use the state-of-the-art minimization
strategy to obtain global energy minima, by means of genetic
algorithms (GA’s).!#"'® The main reason for doing so is that
other methods, like Monte Carlo and conjugate gradient,
show a strong tendency to get stuck in local minima. This
problem is overcome by GA’s, to make sure that the absolute
minimum basin is located. Within this basin and as is well
established,'” GA procedures are combined with local mini-
mizers to zero in on the local minimum. With this purpose in
mind we implemented several local minimizers: classical
molecular dynamics (MD), SIMPLEX, and Monte Carlo. This
way, after renewing the GA population, the local minimum
closest to each individual is determined, with a considerable
convergence acceleration. This scheme has proven to be
quite reliable.!”!® The increased computational speed thus
achieved allows one to implement evaluation intensive mini-
mization procedures, like the GA itself.

As mentioned above we determine the global energy
minimum via the GA, a search technique based on the prin-
ciples of natural evolution.'#~1¢ It uses operators that are ana-
logs of the evolutionary processes of mating or crossover,
mutation, and natural selection, to explore the multidimen-
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sional parameter spaces. In particular, we have implemented
a steady-state GA, in which we specify the fraction of the
population that is replaced in each generation and the frac-
tion that remains unchanged (elitism). We used real numbers
(the spatial coordinates of each atom) in our genome and the
roulette wheel selection method for the choice of parents.
The genetic operators are inversion, one mutation, and four
crossover operators: the arithmetic and geometric means and
the N- and 2-point crossover operators, as described by
Niesse and Mayne.17 The objective function is, of course, the
energy, and the fitness score is obtained by dynamic linear
scaling of the raw objective scores in each generation.

For a fixed number N of atoms in the cluster and for each
of the potentials described above, we performed computa-
tions for ten different populations (each of them with 30
individuals). The initial atomic positions were chosen at ran-
dom under the constraint that the average pair separation be
between 0.7 and 1.3 of the bulk distance, but smaller than the
interaction range. The elitism percentage adopted was 30%,
and 5000 generations were explored. A combination of SIM-
PLEX, Monte Carlo, and molecular dynamics methods was
implemented to obtain the local minimum configuration.

The ab initio Car-Parrinello MD (CPMD) calculations re-
ported here where performed in the framework of the spin-
polarized density functional theory!>?® (DFT) by using the
Car-Parrinello approach.?! The exchange-correlation term is
described by the generalized gradient approximation (GGA)
in the Becke-Lee-Yang-Pann (BLYP) implementation.???3
An alternative is to use instead the B3LYP implementation,
which consists in adding three correction terms to the Becke
correlation functional but, since the latter was designed
mainly to describe small covalently bonded molecules and
contains empirical parameters,’* it is less convenient to carry
out the metallic cluster calculations we are reporting here.
Norm-conserving pseudopotentials?® with s and p as nonlo-
cal and d as local orbitals were used. As input for the ab
initio calculations we took the geometries obtained by means
of phenomenological potentials (specifically the Gupta po-
tential) and all degrees of freedom were allowed to relax
when runing the CPMD code. In the case of the dimer we
have compared our results with published ones>*? and they
agree within 3%. Wave functions were expanded in plane
waves with a 70-Ry cutoff. Convergence with a larger cutoff
was successfully checked to less than 1 meV/atom. To obtain
the magnetic configuration and to study the influence of
magnetism on the structural properties of the minimum-
energy clusters obtained via GA’s and using phenomenologi-
cal potentials, we also calculated ab initio the minimal ge-
ometries for clusters of two, three, four, five, and seven
atoms with different multiplicities (singlet, triplet, and quin-
tuplet). For all of them the triplet turned out to be the
minimum-energy state. The ab initio SIESTA calculations
were performed within the framework of DFT,'>? using a
basis set of strictly localized numerical pseudoatomic orbit-
als, as implemented in the SIESTA code.?’~?° The exchange-
correlation energy was calculated within the local spin den-
sity approximation (LSDA) as parametrized by Perdew and
Zunger.** Norm-conserving pseudopotentials,” in their non-
local form, were used to describe the electron-ion interaction,
including nonlinear core corrections.?! In the SIESTA calcula-
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FIG. 1. (Color online) Optimized palladium geometries of clus-
ters from 2 to 13 atoms in size.

tion we have used a double-zeta basis set including polariza-
tion functions (DZP).?® Convergence tests have demonstrated
that this basis yields reliable results in a variety of cases
including covalent, ionic, and metallic systems. In fact, tests
by Junquera et al. show that DZP calculations are compa-
rable to well-converged plane-wave results.>> The clusters
were placed in a cubic supercell of up to 20 A per side. Due
to the large size of the supercell, only the I' point was used to
sample the Brillouin zone. The cluster geometries obtained
by means of the GA were fully relaxed using the conjugate
gradient method, without any symmetry constraint, until all
the force components became smaller than 0.05 eV/A. The
geometry of each cluster was minimized fixing the spin in
different multiplicities from S=0 to 5. Our results show that
for clusters with N=2-7 the minimum-energy spin configu-
rations are triplet (S=1), for N=8 and 9 are quintet (§=2),
for N=10 to 12 are septet (S=3), and for N=13 the
minimum-energy state is a nonet (S=4). We also find that the
Pd dimer yields a bond length of 2.45 A and a binding en-
ergy of 1.21 eV/atom. The latter is in close agreement with
the experimental value (1.03 eV/atom). For bulk Pd (fcc) we
find a bond length of 2.725 A,33 which agrees well with the
experimental value (2.748 A).3*

The geometries adopted by the minimum-energy Pd clus-
ters, for 2<N=13, are displayed in Fig. 1 where the sym-
metries that determine the point groups given in Table I are
illustrated. These symmetries are consistent with recent
reports,»37 but with minor differences. For N=9, for ex-
ample, our results differ from Ref. 30, but agree with Refs.
31 and 32. Recently a nonichosaedral minimal structure was
reported* for the N=13 cluster. However, at T=0 the energy
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TABLE 1. Interatomic distances (in A) for various Pd clusters and their corresponding point-symmetry
group (PG). The symbol § denotes average distances, whereas * indicates that these distances correspond to
a triangular pyramid (Cs,), rather than to a regular tetrahedron (7). The two rows of D3, and D5, correspond

to in and out of plane, while for 7, they identify center to shell and intrashell distances.

N PG CPMD SIESTA FBD vC G SC MM
2 D.., 2.56 245 1.84 2.50 2.28 2.39 2.67
3 Dy, 2.66" 2.50 225 2.52 241 2.49 2.68
4 T, 2.68" 2.58° 2.39 2.55 2.49 2.55 2.69
5 Dy, 2.75% 2.69° 2.53 2.59 2.56 2.60 2.70
2.68" 2.59° 241 2.55 2.51 2.56 2.69

(o — 2.63° 247 2.56 2.54 2.59 2.68

7 Ds,, 2.66" 2617 2.46 2.56 2.54 2.60 2.70
2.77° 2.67 2.52 2.58 2.57 2.61 2.69

8 Dy, — 2.647 2.50" 2.57° 2.57° 2.617 2.68"
Cay — 2.65° 2.55% 2.60° 2.60" 2.63% 2.71°

10 Cs, — 2.66° 2.561 2617 2617 2.64% 2.71°
11 Cyy — 2.65° 2.58% 2.62° 2.62f 2.65% 2717
12 Cs, — 2.67 2.607 2.637 2.64 2.67° 2717
13 I, — 2.617 2.52F 2.557 2.557 2.587 2.627
2.75% 2.65% 2.68° 2.697 2.71° 2.76°

difference between the two structures, ichosaedral and buck-

larger than 2.6 A. For the dimer, the accepted value

led biplanar, is tiny (0.02 eV). In addition, we also checked
with SIESTA the strictly biplanar and cubeoctahedral configu-
rations. The strictly biplanar has lower energy, but differs
from the buckled biplanar by only 0.19 eV. All of them have
larger energies than the icosahedral structure. Moreover, we
are at present implementing a different global minimization
procedure (conformational space annealing),®® which also
yields, in combination with phenomenological potentials,
several of the preceding structures separated by small energy
differences.

In Fig. 2 the average nearest-neighbor distance is plotted
as a function of cluster size for the different potentials used.
Each value corresponds to the arithmetic average of ten runs,
carried out for every value of N (the number of atoms in the
cluster) and for every potential. Starting from the dimer, the
bond lengths increase with increasing cluster size to a value
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FIG. 2. (Color online) Average nearest-neighbor distance for the
various empirical potentials and ab initio methods we implemented.
The dashed line is the experimental bulk value.

2.48 A. Examination of Fig. 2 indicates that overall, for our
phenomenological calculations, the Sutton-Chen potential
yields the best results; the largest deviations, compared to ab
initio results, are given by the Foiles-Baskes-Daw potential.
Previous results for bond lengths differ only slightly with
ours. Our VC potential bond length for the dimer is shorter,
and for the rest of the clusters longer, than that of Karabacak
et al.,> also obtained with the VC potential. Our SIESTA re-
sults are slightly shorter than those of Kumar and Kawazoe®’
and Nava et al.,’® obtained using other DFT implementa-
tions.

In order to investigate the relative stability of the clusters
we consider the evolution of the binding energy E, and the
first and second energy differences AVE and A®?E, respec-
tively, all defined in terms of the total interaction energy of
the cluster V- Analytically

V ter
E,(N) = ]T (1)
AVE=E,(N) - E)(N-1), (2)
APE=2E,(N)—E,(N=1)—E,(N+1). (3)

Our results for £}, as a function of N are displayed in Fig.
3. In the ab initio calculations E;, was obtained by subtract-
ing N times the energy of an isolated Pd atom. In the N> 1
limit E,, will approach the bulk cohesive energy (for Pd it is
Ei“”‘:—3.89 eV/atom). In terms of stability, the extent to
which E, and AWVE differ is a signature of how far apart the
clusters are from the bulk limit. An important feature of the
E,(N) graph, displayed in Fig. 3, is the dip in the vicinity of
N=13, which corresponds to a region of enhanced stability
(magic number). For clusters of sizes in the range 4<N
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FIG. 3. (Color online) Energy per atom, as a function of cluster
size. The dashed line corresponds to the bulk limit.

=< 13 we calculated again, using as input for SIESTA, the clus-
ter configurations obtained with the Gupta potential and il-
lustrated in Fig. 1. We also calculated, using SIESTA, the en-
ergies of the N=4, 5, and 6 planar configurations® and found
that these structures are 0.9, 1.6, and 3.1 eV higher in energy
than the nonplanar ones, confirming that the clusters in Fig. 1
have lower energies.?

Moreover, a minimum of A®E indicates an enhanced sta-
bility of a cluster of N atoms, relative to its heavier and
lighter neighbors. Therefore, A®E can be considered a mea-
sure of the stability of the clusters, which in general is cor-
related with experimental mass spectral intensities, rather
than with the binding energy E,. Large negative minima of
APE identify the clusters which are most stable. Figure 4
displays our results for the second finite difference of the
total energy plotted against cluster size. Except for the
Murrel-Mottram potential results for A?E the agreement of
the data is quite satisfactory.

In conclusion, we calculated by means of the available
empirical many-body potentials, and also by two ab initio
implementations, the physical properties of small palladium
clusters (2<N=13). These computations were combined
with a state-of-the-art search algorithm (GA) to obtain global
energy minima. All the methods employed yield results that
are quite similar as far as the general trends are concerned. It
is especially remarkable that all the phenomenological poten-
tials yield the same symmetry group for the lowest-energy
cluster geometries. In addition, within our scheme, the ab
initio codes also yield the same symmetry. Differences of
less than 10% in the interatomic distances, for clusters with
more than five atoms, appear as a consequence of using a
particular computation scheme. While, as expected, phenom-
enological potentials do not yield good results for very small
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FIG. 4. (Color online) Second energy difference results.

clusters, which on the other hand can be handled ab initio
without any trouble, the agreement improves rapidly as N
grows. In fact, a computer time saving strategy is to use the
geometry obtained with any of the above-mentioned phe-
nomenological potentials and rescale the distances via an ab
initio procedure. This way, the use of phenomenological po-
tentials allows us to reliably determine the symmetry of the
minimum-energy configurations and to save time in the de-
termination of the interatomic distances.

In principle one does expect ab initio procedures to be the
definitive tool to handle cluster physics problems; however,
it is not always feasible (or at least practical) to implement
such calculations, be it because the number of atoms in-
volved is too large or because one wants to tackle problems
which require one to compute a large number of different
configurations, like the full treatment of cluster-cluster
collisions.> While progress has been made in the description
of excitation and relaxation processes in atom-cluster
collisions—for example, by Saalman and Schmidt** who
combined time-dependent DFT and classical molecular
dynamics—even these calculations are quite formidable.
Thus, the fact that empirical many-body potentials can be
trusted to yield a reasonable description of the physics of
clusters, in particular when ab initio calculations are not fea-
sible, as for example in the study of cluster-cluster collisions,
is quite gratifying.
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