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Part 1

Isoperimetric Inequalities for
Eigenvalues of the
Laplace Operator





CHAPTER 1

Introduction

The contents of this manuscript are based on a series of lectures that one of
us (RB) gave in the IV Escuela de Verano en Análisis y F́ısica Matemática. The
Summer School took place at the Unidad Cuernavaca del Instituto de Matemáticas
de la Universidad Nacional Autónoma de México. It is a pleasure to thank the
organizers of the Summer School for their kind invitation and hospitality. Prelimi-
nary versions of these lectures were also given in the Short Course in Isoperimetric
Inequalities for Eigenvalues of the Laplacian, given by one of us (RB) in February of
2004, as part of the Thematic Program on Partial Differential Equations held at the
Fields Institute, in Toronto, and also as part of the course Autovalores del Lapla-
ciano y Geometŕıa given at the Department of Mathematics of the Universidad de
Pernambuco, in Recife, Brazil, in August 2003.

Isoperimetric Inequalities have played an important role in mathematics since
the times of the Ancient Greece. The first and best known isoperimetric inequality
is the classical isoperimetric inequality

A ≤ L2

4π
,

relating the area A enclosed by a planar closed curve of perimeter L (i.e., Queen
Dido’s problem described in Virgilio’s epic poem “The Aeneid”). After the in-
troduction of Calculus in the XVII century, many new isoperimetric inequalities
have been discovered in mathematics and physics (see, e.g., the review articles
[B80, O80, P67, PSz51]). The eigenvalues of the Laplacian are “geometric ob-
jects” in the sense they do depend on the geometry of the underlying domain,
and to some extent (see Chapter 3) the knowledge of the domain characterizes the
geometry of the domain. Therefore it is natural to pose the problem of finding
isoperimetric inequalities for the eigenvalues of the Laplacian. The first one to
consider this possibility was Lord Rayleigh in his monograph The Theory of Sound
[R45]. In these lectures we will present some of the problems arising in the study of
isoperimetric inequalities for the Laplacian, some of the tools needed in their proof
and many bibliographic discussions about the subject. We start our review with
the classical problem of Mark Kac, Can one hear the shape of a drum. In Chapter
three we review the definitions and basic facts about rearrangements of functions.
Chapter 4 is devoted to the Rayleigh–Faber–Krahn inequality. In Chapter 5 we
review the Szegö–Weinberger inequality, which is an isoperimetric inequality for
the first nontrivial Neumann eigenvalue of the Laplacian. In Chapter 6 we review
the Payne–Pólya–Weinberger isoperimetric inequality for the quotient of the first
two Dirichlet eigenvalues of the Laplacian, as well as several recent extensions.
There are many recent interesting isoperimetric results for the eigenvalues of the
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4 1. INTRODUCTION

bi–harmonic operator, as well as many open problems in that area, which we have
left out of this review.

We would like to thank the anonymous referee for many useful corrections and
remarks.



CHAPTER 2

Can one hear the shape of a drum?

...but it would baffle the most skillful
mathematician to solve the Inverse Problem,
and to find out the shape of a bell by means

of the sounds which is capable of sending out.
Sir Arthur Schuster (1882).

2.1. Introduction

In 1965, the Committee on Educational Media of the Mathematical Association of
America produced a film on a mathematical lecture by Mark Kac (1914–1984) with
the title: Can one hear the shape of a drum? One of the purposes of the film was
to inspire undergraduates to follow a career in mathematics. An expanded version
of that lecture was later published [K66]. Consider two different smooth, bounded
domains, say Ω1 and Ω2 in the plane. Let 0 < λ1 < λ2 ≤ λ3 ≤ . . . be the sequence
of eigenvalues of the Laplacian on Ω1, with Dirichlet boundary conditions and,
correspondingly, 0 < λ′1 < λ′2 ≤ λ′3 ≤ . . . be the sequence of Dirichlet eigenvalues
for Ω2. Assume that for each n, λn = λ′n (i.e., both domains are isospectral). Then,
Mark Kac posed the following question: Are the domains Ω1 and Ω2 congruent in
the sense of Euclidean geometry?.

In 1910, H. A. Lorentz, at the Wolfskehl lecture at the University of Göttingen,
reported on his work with Jeans on the characteristic frequencies of the electro-
magnetic field inside a resonant cavity of volume Ω in three dimensions. According
to the work of Jeans and Lorentz, the number of eigenvalues of the electromagnetic
cavity whose numerical values is below λ (this is a function usually denoted by
N(λ)) is given asymptotically by

(2.1) N(λ) ≈ |Ω|
6π2

λ3/2,

for large values of λ, for many different cavities with simple geometry (e.g., cubes,
spheres, cylinders, etc.) Thus, according to the calculations of Jeans and Lorentz,
to leading order in λ, the counting function N(λ) seemed to depend only on the
volume of the electromagnetic cavity |Ω|. Apparently David Hilbert (1862–1943),
who was attending the lecture, predicted that this conjecture of Lorentz would not
be proved during his lifetime. This time, Hilbert was wrong, since his own student,
Hermann Weyl (1885–1955) proved the conjecture less than two years after the
Lorentz’ lecture.
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6 2. CAN ONE HEAR THE SHAPE OF A DRUM?

Remark: There is a nice account of the work of Hermann Weyl on the eigenvalues of
a membrane in his 1948 J. W. Gibbs Lecture to the American Mathematical Society
[We50].

In N dimensions, (2.1) reads,

(2.2) N(λ) ≈ |Ω|
(2π)N

CNλN/2,

where CN = π(N/2)/Γ((N/2)+1)) denotes the volume of the unit ball in N dimen-
sions.

Using Tauberian theorems, one can relate the behavior of the counting function
N(λ) for large values of λ with the behavior of the function

(2.3) ZΩ(t) ≡
∞∑

n=1

exp{−λnt},

for small values of t. The function ZΩ(t) is the trace of the heat kernel for the
domain Ω, i.e., ZΩ(t) = tr exp(∆t). As we mention above, λn(Ω) denotes the n
Dirichlet eigenvalue of the domain Ω.

An example: the behavior of ZΩ(t) for rectangles

With the help of the Riemann Theta function Θ(x), it is simple to compute the trace
of the heat kernel when the domain is a rectangle of sides a and b, and therefore to
obtain the leading asymptotic behavior for small values of t. The Riemann Theta
function is defined by

(2.4) Θ(x) =
∞∑

n=−∞
e−πn2x,

for x > 0. The function Θ(x) satisfies the following modular relation,

(2.5) Θ(x) =
1√
x

Θ(
1
x

).

Remark: This modular form for the Theta Function already appears in the classical
paper of Riemann [Ri859] (manuscript where Riemann puts forward his famous
Riemann Hypothesis). In that manuscript, the modular form is attributed to Jacobi.

The modular form (2.5) may be obtained from a very elegant application of
Fourier Analysis (see, e.g., [CH53], pp. 75–76) which we reproduce here for com-
pleteness. Define

(2.6) ϕx(y) =
∞∑

n=−∞
e−π(n+y)2x.

Clearly, Θ(x) = ϕx(0). Moreover, the function ϕx(y) is periodic in y of period 1.
Thus, we can express it as follows,

(2.7) ϕx(y) =
∞∑

k=−∞
ake2πki y,
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where, the Fourier coefficients are

(2.8) ak =
∫ 1

0

ϕk(y)e−2πki y dy.

Replacing the expression (2.6) for ϕx(y) in (2.9), using the fact that e2πki n = 1,
we can write,

(2.9) ak =
∫ 1

0

∞∑
n=−∞

e−π(n+y)2xe−2πik(y+n) dy.

Interchanging the order between the integral and the sum, we get,

(2.10) ak =
∞∑

n=−∞

∫ 1

0

(
e−π(n+y)2xe−2πik(y+n)

)
dy.

In the nth summand we make the change of variables y → u = n + y. Clearly, u
runs from n to n + 1, in the nth summand. Thus, we get,

(2.11) ak =
∫ ∞

−∞
e−πu2xe−2πik u du.

i.e., ak is the Fourier transform of a Gaussian. Thus, we finally obtain,

(2.12) ak =
1√
x

e−πk2/x.

Since, Θ(x) = ϕx(0), from (2.7) and (2.12) we finally get,

(2.13) Θ(x) =
∞∑

k=−∞
ak =

1√
x

∞∑

k=−∞
e−πk2/x =

1√
x

Θ(
1
x

).

Remarks: i) The method exhibited above is a particular case of the Poisson Sum-
mation Formula. See [CH53], pp. 76–77; ii) It should be clear from (2.4) that
limx→∞Θ(x) = 1. Hence, from the modular form for Θ(x) we immediately see
that

(2.14) lim
x→0

√
xΘ(x) = 1.

Once we have the modular form for the Riemann Theta function, it is simple
to get the leading asymptotic behavior of the trace of the heat kernel ZΩ(t), for
small values of t, when the domain Ω is a rectangle. Take Ω to be the rectangle of
sides a and b. Its Dirichlet eigenvalues are given by

(2.15) λn,m = π2

[
n2

a2
+

m2

b2

]
,

with n,m = 1, 2, . . . . In terms of the Dirichlet eigenvalues, the trace of the heat
kernel, ZΩ(t) is given by

(2.16) ZΩ(t) =
∞∑

n,m=1

e−λn,mt.
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and using (2.15), and the definition of Θ(x), we get,

(2.17) ZΩ(t) =
1
4

[
θ(

π t

a2
)− 1

] [
θ(

π t

b2
)− 1

]
.

Using the asymptotic behavior of the Theta function for small arguments, i.e.,
(2.14) above, we have

(2.18) ZΩ(t) ≈ 1
4
(

a√
π t

− 1)(
b√
π t

− 1) ≈ 1
4πt

ab− 1
4
√

πt
(a + b) +

1
4

+ O(t).

In terms of the area of the rectangle A = ab and its perimeter L = 2(a + b), the
expression ZΩ(t) for the rectangle may be written simply as,

(2.19) ZΩ(t) ≈ 1
4πt

A− 1
8
√

πt
L +

1
4

+ O(t).

Remark: Using similar techniques, one can compute the small t behavior of ZΩ(t)
for various simple regions of the plane (see, e.g., [McH94]).

The fact that the leading behavior of ZΩ(t) for t small, for any bounded, smooth
domain Ω in the plane is given by

(2.20) ZΩ(t) ≈ 1
4πt

A

was proven by Hermann Weyl [We11]. Here, A = |Ω| denotes the area of Ω. In fact,
what Weyl proved in [We11] is the Weyl Asymptotics of the Dirichlet eigenvalues,
i.e., for large n, λn ≈ (4π n)/A. Weyl’s result (2.20) implies that one can hear the
area of the drum.

In 1954, the Swedish mathematician, Åke Pleijel [Pj54] obtained the improved
asymptotic formula,

Z(t) ≈ A

4πt
− L

8
√

πt
,

where L is the perimeter of Ω. In other words, one can hear the area and the
perimeter of Ω. It follows from Pleijel’s asymptotic result that if all the frequencies
of a drum are equal to those of a circular drum then the drum must itself be
circular. This follows from the classical isoperimetric inequality (i.e., L2 ≥ 4πA,
with equality if and only if Ω is a circle). In other words, one can hear whether a
drum is circular. It turns out that it is enough to hear the first two eigenfrequencies
to determine whether the drum has the circular shape [AB91]

In 1966, Mark Kac obtained the next term in the asymptotic behavior of Z(t)
[K66]. For a smooth, bounded, multiply connected domain on the plane (with r
holes)

(2.21) Z(t) ≈ A

4πt
− L

8
√

πt
+

1
6
(1− r).

Thus, one can hear the connectivity of a drum. The last term in the above asymp-
totic expansion changes for domains with corners (e.g., for a rectangular membrane,
using the modular formula for the Theta Function, we obtained 1/4 instead of 1/6).
Kac’s formula (2.21) was rigorously justified by McKean and Singer [McKS67].
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Moreover, for domains having corners they showed that each corner with inte-
rior angle γ makes an additional contribution to the constant term in (2.21) of
(π2 − γ2)/(24πγ).

An sketch of Kac’s analysis for the first term of the asymptotic expansion is as
follows (here we follow [K66, McH94]). If we imagine some substance concentrated
at ~ρ = (x0, y0) diffusing through the domain Ω bounded by ∂Ω, where the substance
is absorbed at the boundary, then the concentration PΩ(~p

∣∣ ~r; t) of matter at ~r =
(x, y) at time t obeys the diffusion equation

∂PΩ

∂t
= ∆PΩ

with boundary condition PΩ(~p
∣∣ ~r; t) → 0 as ~r → ~a, ~a ∈ ∂Ω, and initial condition

PΩ(~p
∣∣ ~r; t) → δ(~r − ~p) as t → 0, where δ(~r − ~p) is the Dirac delta function. The

concentration PΩ(~p
∣∣ ~r; t) may be expressed in terms of the Dirichlet eigenvalues of

Ω, λn and the corresponding (normalized) eigenfunctions φn as follows,

PΩ(~p
∣∣ ~r; t) =

∞∑
n=1

e−λntφn(~p)φn(~r).

For small t, the diffusion is slow, that is, it will not feel the influence of the boundary
in such a short time. We may expect that

PΩ(~p
∣∣ ~r; t) ≈ P0(~p

∣∣ ~r; t),

ar t → 0, where ∂P0/∂t = ∆P0, and P0(~p
∣∣ ~r; t) → δ(~r − ~p) as t → 0. P0 in fact

represents the heat kernel for the whole R, i.e., no boundaries present. This kernel
is explicitly known. In fact,

P0(~p
∣∣ ~r; t) =

1
4πt

exp(−|~r − ~p|2/4t),

where |~r − ~p|2 is just the Euclidean distance between ~p and ~r. Then, as t → 0+,

PΩ(~p
∣∣ ~r; t) =

∞∑
n=1

e−λntφn(~p)φn(~r) ≈ 1
4πt

exp(−|~r − ~p|2/4t).

Thus, when set ~p = ~r we get
∞∑

n=1

e−λntφ2
n(~r) ≈ 1

4πt
.

Integrating both sides with respect to ~r, using the fact that φn is normalized, we
finally get,

∞∑
n=1

e−λn t ≈ |Ω|
4πt

,

which is the first term in the expansion (2.21). Further analysis gives the remaining
terms (see [K66]).
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Figure 1. GWW Isospectral Domains D1 and D2

2.2. One cannot hear the shape of a drum

In the quoted paper of Mark Kac [K66] he says that he personally believed that one
cannot hear the shape of a drum. A couple of years before Mark Kac’ article, John
Milnor [Mi64], had constructed two non-congruent sixteen dimensional tori whose
Laplace–Beltrami operators have exactly the same eigenvalues. In 1985 Toshikazu
Sunada [Su85], then at Nagoya University in Japan, developed an algebraic frame-
work that provided a new, systematic approach of considering Mark Kac’s question.
Using Sunada’s technique several mathematicians constructed isospectral mani-
folds (e.g., Gordon and Wilson; Brooks; Buser, etc.). See, e.g., the review article of
Robert Brooks (1988) with the situation on isospectrality up to that date in [Br88].
Finally, in 1992, Carolyn Gordon, David Webb and Scott Wolpert [GWW92] gave
the definite negative answer to Mark Kac’s question and constructed two plane do-
mains (henceforth called the GWW domains) with the same Dirichlet eigenvalues.

Proof of Isospectrality Using Transplantation:

The most elementary proof of isospectrality of the GWW domains is done using
the method of transplantation. For the method of transplantation see, e.g., [Be92,
Be93]. See also the expository article [Be93b] by the same author. The method
also appears briefly described in the article of Sridhar and Kudrolli cited in the
Bibliographical Remarks, iii) at the end of this chapter.

To conclude this chapter we will give the details of the proof of isospectrality
of the GWW domains using transplantation. For that purpose label from 1 to 7
the congruent triangles that make the two GWW domains (see Figure 1). Each of
this isosceles right triangles has two cathets, labeled A and B and the hypothenuse,
labeled T . Each of the pieces (triangles) that make each one of the two domains is
connected to one or more neighboring triangles through a side A, a side B or a side
T . Each of the two isospectral domains has an associated graph, which are given
in Figure 2.

These graphs have their origin in the algebraic formulation of Sunada [Su85].
The vertices in each graph are labeled according to the number that each of the
pieces (triangles) has in each of the given domains. As for the edges joining two
vertices in these graphs, they are labeled by either an A, a B or a T depending on



2.2. ONE CANNOT HEAR THE SHAPE OF A DRUM 11

Figure 2. Sunada Graphs corresponding to Domains D1 and D2

the type of the common side of two neighboring triangles in Figure 1. In order to
show that both domains are isospectral it is convenient to consider any function
defined on each domain as consisting of seven parts, each part being the restriction
of the original function to each one of the individual triangles that make the domain.
In this way, if ψ is a function defined on the domain 1, we will write as a vector with
seven components, i.e., ψ = [ψi]7i=1, where ψi is a scalar function whose support
is triangle i on the domain 1. Similarly, a function ϕ defined over the domain 2
may be represented as a seven component vector ϕ = [ϕi]7i=1, with the equivalent
meaning but referred to the second domain.

In order to show the isospectrality of the two domains we have to exhibit a map-
ping transforming the functions defined on the first domain into functions defined
in the second domain. Given the decomposition we have made of the eigenfunctions
as vectors of seven components, this transformation will be represented by a 7× 7
matrix. In order to show that the two domains have the same spectra we need this
matrix to be orthogonal. This matrix is given explicitly by

(2.22) TD =




−a a a −a b −b b
a −b −a b −a a −b
a −a −b b −b a −a
−a b b −a a −b a
−b a b −a a −a b
b −a −a b −a b −a
−b b a −a b −a a

.




For the matrix TD to be orthogonal, we need that the parameters a and b satisfy
the following relations: 4a2+3b2 = 1, 2a2+4ab+b2 = 0, and 4a+3b = 1. Although
we do not need the numerical values of a and b in the sequel, it is good to know
that there is a solution to this system of equations, namely a = (1− 3

√
8/4)/7 and

b = (1 +
√

8)/7. The matrix TD is orthogonal, i.e., TDT t
D = 1. The label D used

here refers to the fact that this matrix TD is used to show isospectrality for the
Dirichlet problem. A similar matrix can be constructed to show isospectrality for
the Neumann problem. In order to show isospectrality it is not sufficient to show
that the matrix TD is orthogonal. It must fulfill two additional properties. On the
one hand it should transform a function ψ that satisfies the Dirichlet conditions
in the first domain in a function ϕ that satisfies Dirichlet boundary conditions
on the second domain. Moreover, by elliptic regularity, since the functions ψ and
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its image ϕ satisfy the eigenvalue equation −∆u = λu, they must be smooth (in
fact they should be real analytic in the interior of the corresponding domains), and
therefore they must be continuous at the adjacent edges connecting two neighboring
triangles. Thus, while the function ψ is continuous when crossing the common edges
of neighboring triangles in the domain 1, the function ϕ should be continuous when
crossing the common edges of neighboring triangles in the domain 2. These two
properties are responsible for the peculiar structure of a’s and b’s in the components
of the matrix TD.

To illustrate these facts, if the function ϕ is an eigenfunction of the Dirichlet
problem for the domain 2, it must satisfy, among others, the following properties,

(2.23) ϕA
2 = ϕA

7 ,

and

(2.24) ϕT
5 = 0.

Here ϕ2 denotes the second component of ϕ, i.e., the restriction of the function ϕ to
the second triangle in Domain 2 (see figure 2). On the other hand, ϕA

2 denotes the
restriction of ϕ2 on the edge A of triangle 2. Since on the domain 2, the triangles
2 and 7 are glued through a cathet of type A, (2.23) is precisely the condition that
ϕ has to be smooth in the interior of 2. On the other hand, ϕ must be a solution of
the Dirichlet problem for the domain 2 and as such it must satisfy zero boundary
conditions. Since the hypothenuse T of triangle 5 is part of the boundary of the
domain 2, ϕ must vanish there. This is precisely the condition (2.24). Let us check,
as an exercise that if ψ is smooth and satisfies Dirichlet boundary conditions in
the domain 1, its image ϕ = TDψ satisfies (2.24) over the domain 2. We let as an
exercise to the reader to check (2.23), and all the other conditions on “smoothness”
and boundary condition of ϕ (this is a long but straightforward task). From (2.22)
we have that

(2.25) ϕT
5 = −bψT

1 + aψT
2 + bψT

3 − aψT
4 + aψT

5 − aψT
6 + bψT

7 .

Since all the sides of type T of the pieces 1, 3 and 7 in the domain 1 are part of the
boundary of the domain (see figure 1), ψT

1 = ψT
3 = ψT

7 = 0. On the other hand,
since 2 and 7 are neighboring triangles in the domain 1, glued through a side of
type T , we have ψT

2 = ψT
4 . By the same reasoning we have ψT

5 = ψT
6 . Using these

three conditions on (2.25) we obtain (2.24). All the other conditions can be verified
in a similar way. Collecting all these facts, we conclude with

Theorem 2.1 (P. Bérard). The transformation TD given by (2.22) is an isom-
etry from L2(D1) into L2(D2) (here D1 and D2 are the two domains of Figures 1
and 2), which induces an isometry from H1

0 (D1) into H1
0 (D2).

and therefore we have

Theorem 2.2 (C. Gordon, D. Webb, S. Wolpert). The domains D1 and D2 of
figures 1 and 2 are isospectral.

Although the proof by transplantation is straightforward to follow, it does not
shed light on the rich geometric, analytic and algebraic structure of the problem
initiated by Mark Kac. For the interested reader it is recommendable to read the
papers of Sunada [Su85] and of Gordon, Webb and Wolpert [GWW92].
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2.3. Bibliographical Remarks

i) The sentence of Arthur Schuster (1851–1934) quoted at the beginning of this chapter
is cited in Reed and Simon’s book, volume IV [RSIV]. It is taken from the article A.
Schuster, The Genesis of Spectra, in Report of the fifty–second meeting of the British
Association for the Advancement of Science (held at Southampton in August 1882). Brit.
Assoc. Rept., pp. 120–121, 1883. Arthur Schuster was a British physicist (he was a leader
spectroscopist at the turn of the XIX century). It is interesting to point out that Arthur
Schuster found the solution to the Lane–Emden equation with exponent 5, i.e., to the
equation,

−∆u = u5,

in R3, with u > 0 going to zero at infinity. The solution is given by

u =
31/4

(1 + |x|2)1/2
.

(A. Schuster, On the internal constitution of the Sun, Brit. Assoc. Rept. pp. 427–429,
1883). Since the Lane–Emden equation for exponent 5 is the Euler–Lagrange equation
for the minimizer of the Sobolev quotient, this is precisely the function that, modulo
translations and dilations, gives the best Sobolev constant. For a nice autobiography
of Arthur Schuster see A. Schuster, Biographical fragments, Mc Millan & Co., London,
(1932).

ii) A very nice short biography of Marc Kac was written by H. P. McKean [Mark Kac in
Bibliographical Memoirs, National Academy of Science, 59, 214–235 (1990); available on
the web (page by page) at http://www.nap.edu/books/0309041988/html/214.html]. The
reader may want to read his own autobiography: Mark Kac, Enigmas of Chance, Harper
and Row, NY, 1985 [reprinted in 1987 in paperback by The University of California Press].
For his article in the American Mathematical Monthly, op. cit., Mark Kac obtained the
1968 Chauvenet Prize of the Mathematical Association of America.

iii) It is interesting to remark that the values of the first Dirichlet eigenvalues of the
GWW domains were obtained experimentally by S. Sridhar and A. Kudrolli, Experiments
on Not “Hearing the Shape” of Drums, Physical Review Letters, 72, 2175–2178 (1994).
In this article one can find the details of the physics experiments performed by these
authors using very thin electromagnetic resonant cavities with the shape of the Gordon–
Webb–Wolpert (GWW) domains. This is the first time that the approximate numerical
values of the first 25 eigenvalues of the two GWW were obtained. The corresponding
eigenfunctions are also displayed. A quick reference to the transplantation method of
Pierre Berard is also given in this article, including the transplantation matrix connecting
the two isospectral domains. The reader may want to check the web page of S. Sridhar’s
Lab (http://sagar.physics.neu.edu/) for further experiments on resonating cavities, their
eigenvalues and eigenfunctions, as well as on experiments on quantum chaos.

iv) The numerical computation of the eigenvalues and eigenfunctions of the pair of GWW
isospectral domains was obtained by Tobin A. Driscoll, Eigenmodes of isospectral domains,
SIAM Review 39, 1–17 (1997).
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v) In its simplified form, the Gordon–Webb–Wolpert domains (GWW domains) are made

of seven congruent rectangle isosceles triangles. Certainly the GWW domains have the

same area, perimeter and connectivity. The GWW domains are not convex. Hence, one

may still ask the question whether one can hear the shape of a convex drum. There are

examples of convex isospectral domains in higher dimension (see e.g. C. Gordon and D.

Webb, Isospectral convex domains in Euclidean Spaces, Math. Res. Letts. 1, 539–545

(1994), where they construct convex isospectral domains in Rn, n ≥ 4). Remark: For an

update of the Sunada Method, and its applications see the article of Robert Brooks [The

Sunada Method, in Tel Aviv Topology Conference “Rothenberg Festschrift” 1998, Contem-

prary Mathematics 231, 25–35 (1999); electronically available at: http://www.math.technion.ac.il/ rbrooks]



CHAPTER 3

Rearrangements

3.1. Definition and basic properties

For many problems of functional analysis it is useful to replace some function
by an equimeasurable but more symmetric one. This method, which was first intro-
duced by Hardy and Littlewood, is called rearrangement or Schwarz symmetriza-
tion [HLP64]. Among several other applications, it plays an important role in the
proofs of isoperimetric inequalities like the Rayleigh–Faber–Krahn inequality or the
Payne–Pólya–Weinberger inequality (see Chapter 4 and Chapter 6 below). In the
following we present some basic definitions and theorems concerning spherically
symmetric rearrangements.

We let Ω be a measurable subset of Rn and write |Ω| for its Lebesgue measure,
which may be finite or infinite. If it is finite we write Ω? for an open ball with the
same measure as Ω, otherwise we set Ω? = Rn. We consider a measurable function
u : Ω → R and assume either that |Ω| is finite or that u decays at infinity, i.e.,
|{x ∈ Ω : |u(x)| > t}| is finite for every t > 0.

Definition 3.1. The function

µ(t) = |{x ∈ Ω : |u(x)| > t}|, t ≥ 0

is called distribution function of u.

From this definition it is straightforward to check that µ(t) is a decreasing (non–
increasing), right-continuous function on R+ with µ(0) = |sprt u| and sprt µ =
[0, ess sup |u|).

Definition 3.2.
• The decreasing rearrangement u] : R+ → R+ of u is the distribution

function of µ.
• The symmetric decreasing rearrangement u? : Ω? → R+ of u is defined by

u?(x) = u](Cn|x|n), where Cn = πn/2[Γ(n/2+1)]−1 is the measure of the
n-dimensional unit ball.

Because µ is a decreasing function, Definition 3.2 implies that u] is an essentially
inverse function of µ. The names for u] and u? are justified by the following two
lemmas:

Lemma 3.3.
(a) The function u] is decreasing, u](0) = esssup |u| and sprtu] = [0, |sprtu|)
(b) u](s) = min {t ≥ 0 : µ(t) ≤ s}
(c) u](s) =

∫∞
0

χ[0,µ(t))(s) dt

(d) |{s ≥ 0 : u](s) > t}| = |{x ∈ Ω : |u(x)| > t}| for all t ≥ 0.
(e) {s ≥ 0 : u](s) > t} = [0, µ(t)) for all t ≥ 0.

15
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Proof. Part (a) is a direct consequence of the definition of u], keeping in mind
the general properties of distribution functions stated above. The representation
formula in part (b) follows from

u](s) = |{w ≥ 0 : µ(w) > s}| = sup{w ≥ 0 : µ(w) > s} = min{w ≥ 0 : µ(w) ≤ s},
where we have used the definition of u] in the first step and then the monotonicity
and right-continuity of µ. Part (c) is a consequence of the ‘layer-cake formula’, see
Theorem 7.1 in the appendix. To prove part (d) we need to show that

(3.1) {s ≥ 0 : u](s) > t} = [0, µ(t)).

Indeed, if s is an element of the left hand side of (3.1), then by Lemma 3.3, part
(b), we have

min{w ≥ 0 : µ(w) ≤ s} > t.

But this means that µ(t) > s, i.e., s ∈ [0, µ(t)). On the other hand, if s is an
element of the right hand side of (3.1), then s < µ(t) which implies again by part
(b) that

u](s) = min{w ≥ 0 : µ(w) ≤ s} ≥ min{w ≥ 0 : µ(w) < µ(t)} > t,

i.e., s is also an element of the left hand side. Finally, part (e) is a direct consequence
from part (d). ¤

It is straightforward to transfer the statements of Lemma 3.3 to the symmetric
decreasing rearrangement:

Lemma 3.4.
(a) The function u? is spherically symmetric and radially decreasing.
(b) The measure of the level set {x ∈ Ω? : u?(x) > t} is the same as the

measure of {x ∈ Ω : |u(x)| > t} for any t ≥ 0.

From Lemma 3.3 (c) and Lemma 3.4 (b) we see that the three functions u,
u] and u? have the same distribution function and therefore they are said to be
equimeasurable. Quite analogous to the decreasing rearrangements one can also
define increasing ones:

Definition 3.5.
• If the measure of Ω is finite, we call u](s) = u](|Ω| − s) the increasing

rearrangement of u.
• The symmetric increasing rearrangement u? : Ω? → R+ of u is defined by

u?(x) = u](Cn|x|n)

3.2. Main theorems

Rearrangements are a useful tool of functional analysis because they consider-
ably simplify a function without changing certain properties or at least changing
them in a controllable way. The simplest example is the fact that the integral of a
function’s absolute value is invariant under rearrangement. A bit more generally,
we have:

Theorem 3.6. Let Φ be a continuous increasing map from R+ to R+ with
Φ(0) = 0. Then∫

Ω?

Φ(u?(x)) dx =
∫

Ω

Φ(|u(x)|) dx =
∫

Ω?

Φ(u?(x)) dx.
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Proof. The theorem follows directly from Theorem 7.1 in the appendix: If we
choose m( dx) = dx, the right hand side of (7.1) takes the same value for v = |u|,
v = u? and v = u?. The conditions on Φ are necessary since Φ(t) = ν([0, t)) must
hold for some measure ν on R+. ¤

For later reference we state a rather specialized theorem, which is an estimate
on the rearrangement of a spherically symmetric function that is defined on an
asymmetric domain:

Theorem 3.7. Assume that uΩ : Ω → R+ is given by uΩ(x) = u(|x|), where
u : R+ → R+ is a non-negative decreasing (resp. increasing) function. Then
u?

Ω(x) ≤ u(|x|) (resp. uΩ?(x) ≥ u(|x|)) for every x ∈ Ω?.

Proof. Assume first that u is a decreasing function. The layer–cake represen-
tation for u?

Ω is

u?
Ω(x) = u](Cn|x|n) =

∫ ∞

0

χ[0,|{x∈Ω:uΩ(x)>t}|)(Cn|x|n) dt

≤
∫ ∞

0

χ[0,|{x∈Rn:u(|x|)>t}|)(Cn|x|n) dt

=
∫ ∞

0

χ{x∈Rn:u(|x|)>t}(x) dt

= u(|x|)
¤

The product of two functions changes in a controllable way under rearrange-
ment:

Theorem 3.8. Suppose that u and v are measurable and non-negative functions
defined on some Ω ⊂ Rn with finite measure. Then

(3.2)
∫

R+
u](s) v](s) ds ≥

∫

Ω

u(x) v(x) dx ≥
∫

R+
u](s) v](s) ds

and

(3.3)
∫

Ω?

u?(x) v?(x) dx ≥
∫

Ω

u(x) v(x) dx ≥
∫

Ω?

u?(x) v?(x) dx.

Proof. We first show that for every measurable Ω′ ⊂ Ω and every measurable
v : Ω → R+ the relation

(3.4)
∫ |Ω′|

0

v](s) ds ≥
∫

Ω′
v dx ≥

∫ |Ω′|

0

v](s) ds

holds: We can assume without loss of generality that v is integrable. Then the
layer-cake formula (see Theorem 7.1 in the appendix) gives

(3.5) v =
∫ ∞

0

χ{x∈Ω:v(x)>t} dt and v] =
∫ ∞

0

χ[0,µ(t)) dt.

Hence, ∫

Ω′
v dx =

∫ ∞

0

|Ω′ ∩ {x ∈ Ω : v(x) > t}| dt,

∫ |Ω′|

0

v](s) ds =
∫ ∞

0

min
(|Ω′|, |{x ∈ Ω : v(x) > t}|) dt.
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The first inequality in (3.4) follows. The second inequality in (3.4) can be estab-
lished with the help of the first:

∫ |Ω′|

0

v] ds =
∫ |Ω|

0

v] ds−
∫ |Ω|

|Ω′|
v] ds

=
∫

Ω

v dx−
∫ |Ω|−|Ω′|

0

v] ds

≤
∫

Ω

v dx−
∫

Ω\Ω′
v dx =

∫

Ω′
v dx.

Now assume that u and v are measurable, non-negative and - without loosing
generality - integrable. Since we can replace v by u in the equations (3.5), we have

∫

Ω

u(x)v(x) dx =
∫ ∞

0

dt

∫

{x∈Ω:u(x)>t}

v(x) dx,

∫ ∞

0

u](s)v](s) ds =
∫ ∞

0

dt

∫ µ(t)

0

v](s) ds,

where µ is the distribution function of u. On the other hand, the first inequality in
(3.4) tells us that

∫

{x∈Ω:u(x)>t}

v(x) dx ≤
∫ µ(t)

0

v](s) ds

for every non-negative t, such that the first inequality in (3.2) follows. The second
part of (3.2) can be proven completely analogously, and the inequalities (3.3) are a
direct consequence of (3.2). ¤

3.3. Gradient estimates

The integral of a function’s gradient over the boundary of a level set can be
estimated in terms of the distribution function:

Theorem 3.9. Assume that u : Rn → R is Lipschitz continuous and decays at
infinity, i.e., the measure of Ωt := {x ∈ Rn : |u(x)| > t} is finite for every positive
t. If µ is the distribution function of u then

(3.6)
∫

∂Ωt

|∇u|Hn−1( dx) ≥ −n2C2/n
n

µ(t)2−2/n

µ′(t)
.

Remark: Here Hn(A) denotes the n–dimensional Hausdorff measure of the set A
(see, e.g., [Fe69]).

Proof. On the one hand, by the classical isoperimetric inequality we have

(3.7)
∫

∂Ωt

Hn−1( dx) ≥ nC1/n
n |Ωt|1−1/n = nC1/n

n µ(t)1−1/n.
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On the other hand, we can use the Cauchy-Schwarz inequality to get
∫

∂Ωt

Hn−1( dx) =
∫

∂Ωt

√
|∇u|√
|∇u|Hn−1( dx)

≤
(∫

∂Ωt

|∇u|Hn−1( dx)
)1/2 (∫

∂Ωt

1
|∇u|Hn−1( dx)

)1/2

.

The last integral in the above formula can be replaced by −µ′(t) according to
Federer’s coarea formula (see, [Fe69]). The result is

(3.8)
∫

∂Ωt

Hn−1( dx) ≤
(∫

∂Ωt

|∇u|Hn−1( dx)
)1/2

(−µ′(t))1/2
.

Comparing the equations (3.7) and (3.8) yields Theorem 3.9. ¤

Integrals that involve the norm of the gradient can be estimated using the
following important theorem:

Theorem 3.10. Let Φ : R+ → R+ be a Young function, i.e., Φ is increasing
and convex with Φ(0) = 0. Suppose that u : Rn → R is Lipschitz continuous and
decays at infinity. Then∫

Rn

Φ(|∇u?(x)|) dx ≤
∫

Rn

Φ(|∇u(x)|) dx.

For the special case Φ(t) = t2 Theorem 3.10 states that the ‘energy expectation
value’ of a function decreases under symmetric rearrangement, a fact that is key to
the proof of the Rayleigh–Faber–Krahn inequality (see Section 4.1).

Proof. Theorem 3.10 is a consequence of the following chain of (in)equalities,
the second step of which follows from Lemma 3.11 below.

∫

Rn

Φ(|∇u|) dx =
∫ ∞

0

ds
d
ds

∫

{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u|) dx

≥
∫ ∞

0

ds Φ
(
−nC1/n

n s1−1/n du∗

ds
(s)

)

=
∫

Rn

Φ(|∇u?|) dx.

¤

Lemma 3.11. Let u and Φ be as in Theorem 3.10. Then for almost every
positive s holds

(3.9)
d
ds

∫

{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u|) dx ≥ Φ
(
−nC1/n

n s1−1/n du∗

ds
(s)

)
.

Proof. First we prove Lemma 3.11 for the special case of Φ being the identity.
If s > |sprt u| then (3.9) is clearly true since both sides vanish. Thus we can assume
that 0 < s < |sprt u|. For all 0 ≤ a < b < |sprt u| we show that

(3.10)
∫

{x∈Rn:u∗(a)>|u(x)|>u∗(b)}

|∇u(x)|dx ≥ nC1/n
n a1−1/n(u∗(a)− u∗(b)).



20 3. REARRANGEMENTS

The statement (3.10) is proven by the following chain of inequalities, in which we
first use Federer’s coarea formula, then the classical isoperimetric inequality in Rn

and finally the monotonicity of the integrand:

l.h.s. of (3.10) =
∫ u∗(a)

u∗(b)
Hn−1{x ∈ Rn : |u(x)| = t}dt

≥
∫ u∗(a)

u∗(b)
nC1/n

n |{x ∈ Rn : |u(x)| ≥ t}|1−1/n dt

≥ nC1/n
n |{x ∈ Rn : |u(x)| ≥ u∗(a)}|1−1/n · (u∗(a)− u∗(b))

≥ r.h.s. of (3.10).

In the case of Φ being the identity, Lemma 3.11 follows from (3.10): Replace b by
a + ε with some ε > 0, multiply both sides by ε−1 and then let ε go to zero.

It remains to show that equation (3.9) holds for almost every s > 0 if Φ is not
the identity but some general Young function. From the monotonicity of u∗ follows
that for almost every s > 0 either du∗

ds is zero or there is a neighborhood of s where
u∗ is continuous and decreases strictly. In the first case there is nothing to prove,
thus we can assume the second one. Then we have

(3.11) |{x ∈ Rn : u∗(s) ≥ |u(x)| > u∗(s + ε)}| = ε

for small enough ε > 0. Consequently, we can apply Jensen’s inequality to get

1
ε

∫

{x∈Rn:u∗(s)≥|u(x)|>u∗(s+h)}

Φ(|∇u(x)|) dx ≥ Φ


1

ε

∫

{x∈Rn:u∗(s)≥|u(x)|>u∗(s+h)}

|∇u(x)| dx


 .

Taking the limit ε ↓ 0, this yields

d
ds

∫

{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u(x)|) dx ≥ Φ


 d

ds

∫

{x∈Rn:|u(x)|>u∗(s)}

|∇u(x)|dx


 .

Since we have already proven Lemma 3.11 for the case of Φ being the identity, we
can apply it to the argument of Φ on the right hand side of the above inequality.
The statement of Lemma 3.11 for general Φ follows. ¤

3.4. Bibliographical Remarks

i) Rearrangements of functions were introduced by G. Hardy and J. E. Littlewood. Their
results are contained in the classical book, G.H. Hardy, J. E. Littlewood, J.E., and G.
Pólya, Inequalities, 2d ed., Cambridge University Press, 1952. The fact that the L2 norm
of the gradient of a function decreases under rearrangements was proven by Faber and
Krahn (see references below). A more modern proof as well as many results on rear-
rangements and their applications to PDE’s can be found in G. Talenti, Elliptic equations
and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3, 697–718 (1976).
(The reader may want to see also the article by E.H. Lieb, Existence and uniqueness of
the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57,
93–105 (1976/77), for an alternative proof of the fact that the L2 norm of the gradient
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decreases under rearrangements using heat kernel techniques). An excellent expository
review on rearrangements of functions (with a good bibliography) can be found in Tal-
enti, G., Inequalities in rearrangement invariant function spaces, in Nonlinear analysis,
function spaces and applications, Vol. 5 (Prague, 1994), 177–230, Prometheus, Prague,
1994. (available at the website: http://www.emis.de/proceedings/Praha94/). The Riesz
rearrangement inequality is the assertion that for nonnegative measurable functions f, g, h
in Rn, we have∫

Rn×Rn

f(y)g(x− y)h(x)dx dy ≤
∫

Rn×Rn

f?(y)g?(x− y)h?(x)dx dy

. For n = 1 the inequality is due to F. Riesz, Sur une inégalité intégrale, Journal of the
London Mathematical Society 5, 162–168 (1930). For general n is due to S.L. Sobolev, On
a theorem of functional analysis, Mat. Sb. (NS) 4, 471–497 (1938) [the English translation
appears in AMS Translations (2) 34, 39–68 (1963)]. The cases of equality in the Riesz
inequality were studied by A. Burchard, Cases of equality in the Riesz rearrangement
inequality, Annals of Mathematics 143 499–627 (1996) (this paper also has an interesting
history of the problem).

ii) Rearrangements of functions have been extensively used to prove symmetry properties
of positive solutions of nonlinear PDE’s. See, e.g., Kawohl, Bernhard, Rearrangements
and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag,
Berlin (1985), and references therein.

iii) There are different types of rearrangements of functions. For an interesting approach
to rearrangements see, Brock, Friedemann and Solynin, Alexander Yu. An approach to
symmetrization via polarization. Trans. Amer. Math. Soc. 352 1759–1796 (2000). This
approach goes back through Baernstein–Taylor (Duke Math. J. 1976), who cite Ahlafors
(book on “Conformal invariants”, 1973), who in turn credits Hardy and Littlewood.





CHAPTER 4

The Rayleigh–Faber–Krahn inequality

4.1. The Euclidean case

Many isoperimetric inequalities have been inspired by the question which geo-
metrical layout of some physical system maximizes or minimizes a certain quantity.
One may ask, for example, how matter of a given mass density must be distributed
to minimize its gravitational energy, or which shape a conducting object must have
to maximize its electrostatic capacity. The most famous question of this kind was
put forward at the end of the 19th century by Lord Rayleigh in his work on the
theory of sound [R45]: He conjectured that among all drums of the same area and
the same tension the circular drum produces the lowest fundamental frequency.
This statement was proven independently in the 1920s by Faber [F23] and Krahn
[K25, K26].

To treat the problem mathematically, we consider an open bounded domain
Ω ⊂ R2 which matches the shape of the drum. Then the oscillation frequencies
of the drum are given by the eigenvalues of the Laplace operator −∆Ω

D on Ω with
Dirichlet boundary conditions, up to a constant that depends on the drum’s tension
and mass density. In the following we will allow the more general case Ω ⊂ Rn for
n ≥ 2, although the physical interpretation as a drum only makes sense if n = 2.
We define the Laplacian −∆Ω

D via the quadratic–form approach, i.e., it is the unique
self–adjoint operator in L2(Ω) which is associated with the closed quadratic form

h[Ψ] =
∫

Ω

|∇Ψ|2 dx, Ψ ∈ H1
0 (Ω).

Here H1
0 (Ω), which is a subset of the Sobolev space W 1,2(Ω), is the closure of

C∞0 (Ω) with respect to the form norm

(4.1) | · |2h = h[·] + || · ||L2(Ω).

For more details about the important question of how to define the Laplace operator
on arbitrary domains and subject to different boundary conditions we refer the
reader to [D96, BS87].

The spectrum of −∆Ω
D is purely discrete since H1

0 (Ω) is, by Rellich’s theorem,
compactly imbedded in L2(Ω) (see, e.g., [BS87]). We write λ1(Ω) for the lowest
eigenvalue of −∆Ω

D.

Theorem 4.1 (Rayleigh–Faber–Krahn inequality). Let Ω ⊂ Rn be an open
bounded domain with smooth boundary and Ω? ⊂ Rn a ball with the same measure
as Ω. Then

λ1(Ω∗) ≤ λ1(Ω)

with equality if and only if Ω itself is a ball.

23
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Proof. With the powerful mathematical tool of rearrangements (see Chap-
ter 3) at hand, the proof of the Rayleigh–Faber–Krahn inequality is actually not
difficult. Let Ψ be the positive normalized first eigenfunction of −∆Ω

D. Since the
domain of a positive self-adjoint operator is a subset of its form domain, we have
Ψ ∈ H1

0 (Ω). Then we have Ψ? ∈ H1
0 (Ω?). Thus we can apply first the min–max

principle and then the Theorems 3.6 and 3.10 to obtain

λ1(Ω?) ≤
∫
Ω? |∇Ψ?|2 dnx∫
Ω? |Ψ∗|2 dnx

≤
∫
Ω
|∇Ψ|2 dnx∫
Ω

Ψ2 dnx
= λ1(Ω).

¤

The Rayleigh–Faber–Krahn inequality has been extended to a number of differ-
ent settings, for example to Laplace operators on curved manifolds or with respect
to different measures. In the following we shall give an overview of these general-
izations.

4.2. Schrödinger operators

It is not difficult to extend the Rayleigh-Faber-Krahn inequality to Schrödinger
operators, i.e., to operators of the form −∆+V (x). Let Ω ⊂ Rn be an open bounded
domain and V : Rn → R+ a non-negative potential in L1(Ω). Then the quadratic
form

hV [u] =
∫

Ω

(|∇u|2 + V (x)|u|2) dnx,

defined on

Dom hV = H1
0 (Ω) ∩

{
u ∈ L2(Ω) :

∫

Ω

(1 + V (x))|u(x)|2 dnx < ∞
}

is closed (see, e.g., [D90, D96]). It is associated with the positive self-adjoint
Schrödinger operator HV = −∆ + V (x). The spectrum of HV is purely discrete
and we write λ1(Ω, V ) for its lowest eigenvalue.

Theorem 4.2. Under the assumptions stated above,

λ1(Ω∗, V?) ≤ λ1(Ω, V ).

Proof. Let u1 ∈ Dom hV be the positive normalized first eigenfunction of
HV . Then we have u?

1 ∈ H1
0 (Ω?) and by Theorem 3.8

∫

Ω?

(1 + V?)u?
1
2 dnx ≤

∫

Ω

(1 + V )u2
1 dnx < ∞.

Thus u?
1 ∈ Dom hV? and we can apply first the min–max principle and then Theo-

rems 3.6, 3.8 and 3.10 to obtain

λ1(Ω?, V?) ≤
∫
Ω?

(|∇u?
1|2 + V?u

?
1
2
)

dnx∫
Ω? |u?

1|2 dnx

≤
∫
Ω

(|∇u1|2 + V u2
1

)
dnx∫

Ω
u2

1 dnx
= λ1(Ω, V ).

¤
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4.3. Gaussian Space

Consider the space Rn (n ≥ 2) endowed with the measure dµ = γ(x) dnx,
where

(4.2) γ(x) = (2π)−n/2e−
|x|2
2 ,

is the standard Gaussian density. Since γ(x) is a Gauss function we will call
(Rn, dµ) the Gaussian space. For any Lebesgue–measurable Ω ⊂ Rn we define
the Gaussian perimeter of Ω by

Pµ(Ω) = sup
{∫

Ω

((∇− x) · v(x))γ(x) dx : v ∈ C1
0 (Ω,Rn), ||v||∞ ≤ 1

}
.

If ∂Ω is sufficiently well-behaved then

Pµ(Ω) =
∫

∂Ω

γ(x) dHn−1,

where Hn−1 is the (n−1)–dimensional Hausdorff measure [Fe69]. It has been shown
by Borell that in Gaussian space there is an analog to the classical isoperimetric
inequality. Yet the sets that minimize the surface (i.e., the Gaussian perimeter) for
a given volume (i.e., Gaussian measure) are not balls, as in Euclidean space, but
half–spaces [B75]. More precisely:

Theorem 4.3. Let Ω ⊂ Rn be open and measurable. Let further Ω] be the
half-space {~x ∈ Rn : x1 > a}, where a ∈ R is chosen such that µ(Ω) = µ(Ω]). Then

Pµ(Ω) ≥ Pµ(Ω])

with equality only if Ω = Ω] up to a rotation.

Next we define the Laplace operator for domains in Gaussian space. We choose
an open domain Ω ⊂ Rn with µ(Ω) < µ(Rn) = 1 and consider the function space

H1(Ω, dµ) =
{

u ∈ W 1,1
loc (Ω) such that (u, |∇u|) ∈ L2(Ω, dµ)× L2(Ω, dµ)

}
,

endowed with the norm

||u||H1(Ω, dµ) = ||u||L2(Ω, dµ) + ||∇u||L2(Ω, dµ).

We define the quadratic form

h[u] =
∫

Ω

|∇u|2 dµ

on the closure of C∞0 (Ω) in H1(Ω, dµ). Since H1 is complete, Dom h is also com-
plete under its form norm, which is equal to || · ||H1(Ω, dµ). The quadratic form h is
therefore closed and associated with a unique positive self-adjoint operator −∆G.
Dom h is embedded compactly in L2(Ω, dµ) and therefore the spectrum of −∆G

is discrete. Its eigenfunctions and eigenvalues are solutions of the boundary value
problem

(4.3)
−

n∑
j=1

∂
∂xj

(
γ(x) ∂

∂xj
u
)

= λγ(x)u in Ω,

u = 0 on ∂Ω.

The analog of the Rayleigh–Faber–Krahn inequality for Gaussian Spaces is the
following theorem.
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Theorem 4.4. Let λ1(Ω) be the lowest eigenvalue of −∆G on Ω and let Ω′ be
a half-space of the same Gaussian measure as Ω. Then

λ1(Ω′) ≤ λ1(Ω).

Equality holds if and only if Ω itself is a half-space.

4.4. Spaces of constant curvature

Differential operators can not only be defined for functions in Euclidean space,
but also for the more general case of functions on Riemannian manifolds. It is
therefore natural to ask whether the isoperimetric inequalities for the eigenvalues of
the Laplacian can be generalized to such settings as well. In this section we will state
Rayleigh–Faber–Krahn type theorems for the spaces of constant non-zero curvature,
i.e., for the sphere and the hyperbolic space. Isoperimetric inequalities for the
second Laplace eigenvalue in these curved spaces will be discussed in Section 6.7.

To start with, we define the Laplacian in hyperbolic space as a self-adjoint
operator by means of the quadratic form approach. We realize Hn as the open unit
ball B = {(x1, . . . , xn) :

∑n
j=1 x2

j < 1} endowed with the metric

(4.4) ds2 =
4|dx|2

(1− |x|2)2
and the volume element

(4.5) dV =
2n dnx

(1− |x|2)n
,

where | · | denotes the Euclidean norm. Let Ω ⊂ Hn be an open domain and assume
that it is bounded in the sense that Ω does not touch the boundary of B. The
quadratic form of the Laplace operator in hyperbolic space is the closure of

(4.6) h[u] =
∫

Ω

gij(∂iu)(∂ju) dV, u ∈ C∞0 (Ω).

It is easy to see that the form (4.6) is indeed closeable: Since Ω does not touch
the boundary of B, the metric coefficients gij are bounded from above on Ω. They
are also bounded from below by gij ≥ 4. Consequently, the form norms of h and
its Euclidean counterpart, which is the right hand side of (4.6) with gij replaced
by δij , are equivalent. Since the ‘Euclidean’ form is well known to be closeable, h
must also be closeable.

By standard spectral theory, the closure of h induces an unique positive self-
adjoint operator −∆H which we call the Laplace operator in hyperbolic space.
Equivalence between corresponding norms in Euclidean and hyperbolic space im-
plies that the imbedding Dom h → L2(Ω, dV ) is compact and thus the spectrum
of −∆H is discrete. For its lowest eigenvalue the following Rayleigh–Faber–Krahn
inequality holds.

Theorem 4.5. Let Ω ⊂ Hn be an open bounded domain with smooth boundary
and Ω? ⊂ Hn an open geodesic ball of the same measure. Denote by λ1(Ω) and
λ1(Ω?) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective
domain. Then

λ1(Ω?) ≤ λ1(Ω)

with equality only if Ω itself is a geodesic ball.
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The Laplace operator −∆S on a domain which is contained in the unit sphere
Sn can be defined in a completely analogous fashion to −∆H by just replacing the
metric gij in (4.6) by the metric of Sn.

Theorem 4.6. Let Ω ⊂ Sn be an open bounded domain with smooth boundary
and Ω? ⊂ Sn an open geodesic ball of the same measure. Denote by λ1(Ω) and
λ1(Ω?) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective
domain. Then

λ1(Ω?) ≤ λ1(Ω)
with equality only if Ω itself is a geodesic ball.

The proofs of the above theorems are similar to the proof for the Euclidean
case and will be omitted here. A more general Rayleigh–Faber–Krahn theorem for
the Laplace operator on Riemannian manifolds and its proof can be found in the
book of Chavel [C84].

4.5. Robin Boundary Conditions

Yet another generalization of the Rayleigh–Faber–Krahn inequality holds for
the boundary value problem

(4.7)
−

n∑
j=1

∂2

∂x2
j
u = λu in Ω,

∂u
∂ν + βu = 0 on ∂Ω,

on a bounded Lipschitz domain Ω ⊂ Rn with the outer unit normal ν and some
constant β > 0. This so–called Robin boundary value problem can be interpreted as
a mathematical model for a vibrating membrane whose edge is coupled elastically
to some fixed frame. The parameter β indicates how tight this binding is and
the eigenvalues of (4.7) correspond the the resonant vibration frequencies of the
membrane. They form a sequence 0 < λ1 < λ2 ≤ λ3 ≤ . . . (see, e.g., [M85]).

The Robin problem (4.7) is more complicated than the corresponding Dirichlet
problem for several reasons. For example, the very useful property of domain
monotonicity does not hold for the eigenvalues of the Robin–Laplacian. That is,
if one enlarges the domain Ω in a certain way, the eigenvalues may go up. It is
known though, that a very weak form of domain monotonicity holds, namely that
λ1(B) ≤ λ1(Ω) if B is ball that contains Ω. Another difficulty of the Robin problem,
compared to the Dirichlet case, is that the level sets of the eigenfunctions may touch
the boundary. This makes it impossible, for example, to generalize the proof of the
Rayleigh–Faber–Krahn inequality in a straightforward way. Nevertheless, such an
isoperimetric inequality holds, as proven by Daners:

Theorem 4.7. Let Ω ⊂ Rn (n ≥ 2) be a bounded Lipschitz domain, β > 0 a
constant and λ1(Ω) the lowest eigenvalue of (4.7). Then λ1(Ω?) ≤ λ1(Ω).

For the proof of Theorem 4.7, which is not short, we refer the reader to [D06].

4.6. Bibliographical Remarks

i) The Rayleigh–Faber–Krahn inequality is an isoperimetric inequality concerning the
lowest eigenvalue of the Laplacian, with Dirichlet boundary condition, on a bounded
domain in Rn (n ≥ 2). Let 0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ . . . be the Dirichlet eigenvalues
of the Laplacian in Ω ⊂ Rn, i.e.,

−∆u = λu in Ω,
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u = 0 on the boundary of Ω.

If n = 2, the Dirichlet eigenvalues are proportional to the square of the eigenfrequencies of
an elastic, homogeneous, vibrating membrane with fixed boundary. The Rayleigh–Faber–
Krahn inequality for the membrane (i.e., n = 2) states that

λ1 ≥ πj2
0,1

A
,

where j0,1 = 2.4048 . . . is the first zero of the Bessel function of order zero, and A is the
area of the membrane. Equality is obtained if and only if the membrane is circular. In
other words, among all membranes of given area, the circle has the lowest fundamental
frequency. This inequality was conjectured by Lord Rayleigh (see, Rayleigh, J.W.S., The
Theory of Sound, second edition, London, 1894/1896, pp. 339–340). In 1918, Courant
(see R. Courant, Math. Z. 1, 321–328 (1918)) proved the weaker result that among all
membranes of the same perimeter L the circular one yields the least lowest eigenvalue,
i.e.,

λ1 ≥ 4π2j2
0,1

L2
,

with equality if and only if the membrane is circular. Rayleigh’s conjecture was proven in-
dependently by Faber [F23] and Krahn [K25]. The corresponding isoperimetric inequality
in dimension n,

λ1(Ω) ≥
(

1

|Ω|
)2/n

C2/n
n jn/2−1,1,

was proven by Krahn [K26]. Here jm,1 is the first positive zero of the Bessel function

Jm, |Ω| is the volume of the domain, and Cn = πn/2/Γ(n/2 + 1) is the volume of the
n–dimensional unit ball. Equality is attained if and only if Ω is a ball. For more details
see, R.D. Benguria, Rayleigh–Faber–Krahn Inequality, in Encyclopaedia of Mathematics,
Supplement III, Managing Editor: M. Hazewinkel, Kluwer Academic Publishers, pp. 325–
327, (2001).

ii) A natural question to ask concerning the Rayleigh–Faber–Krahn inequality is the ques-
tion of stability. If the lowest eigenvalue of a domain Ω is within ε (positive and suffi-
ciently small) of the isoperimetric value λ1(Ω

∗), how close is the domain Ω to being a ball?
The problem of stability for (convex domains) concerning the Rayleigh–Faber–Krahn in-
equality was solved by Antonios Melas (Melas, A.D., The stability of some eigenvalue
estimates, J. Differential Geom. 36, 19–33 (1992)). In the same reference, Melas also
solved the analogous stability problem for convex domains with respect to the PPW in-
equality (see Chapter 6 below). The work of Melas has been extended to the case of the
Szegö–Weinberger inequality (for the first nontrivial Neumann eigenvalue) by Xu, Youyu,
The first nonzero eigenvalue of Neumann problem on Riemannian manifolds, J. Geom.
Anal. 5 151–165 (1995), and to the case of the PPW inequality on speces of constant
curvature by Andrés Avila, Stability results for the first eigenvalue of the Laplacian on
domains in space forms, J. Math. Anal. Appl. 267, 760–774 (2002). In this connection it
is worth mentioning related results on the isoperimetric inequality of R. Hall, A quantita-
tive isoperimetric inequality in n–dimensional space, J. Reine Angew Math. 428 (1992),
161–176, as well as recent results of Maggi, Pratelli and Fusco (recently reviewed by F.
Maggi in Bull. Amer. Math. Soc. 45 (2008), 367–408.

iii) The analog of the Faber–Krahn inequality for domains in the sphere Sn was proven by
Sperner, Emanuel, Jr. Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134
(1973), 317–327
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iv) For isoperimetric inequalities for the lowest eigenvalue of the Laplace–Beltrami oper-
ator on manifolds, see, e.g., the book by Chavel, Isaac, Eigenvalues in Riemannian
geometry. Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL,
1984, (in particular Chapters IV and V), and also the articles, Chavel, I. and Feldman,
E. A. Isoperimetric inequalities on curved surfaces. Adv. in Math. 37, 83–98 (1980),
and Bandle, Catherine, Konstruktion isoperimetrischer Ungleichungen der mathematis-
chen Physik aus solchen der Geometrie, Comment. Math. Helv. 46, 182–213 (1971).





CHAPTER 5

The Szegö–Weinberger inequality

In analogy to the Rayleigh–Faber–Krahn inequality for the Dirichlet–Laplacian
one may ask which shape of a domain maximizes certain eigenvalues of the Laplace
operator with Neumann boundary conditions. Of course, this question is trivial
for the lowest Neumann eigenvalue, which is always zero. In 1952 Kornhauser and
Stakgold [KS52] conjectured that the ball maximizes the first non-zero Neumann
eigenvalue among all domains of the same volume. This was first proven in 1954 by
Szegö [S54] for two-dimensional simply connected domains, using conformal map-
pings. Two years later his result was generalized general domains in any dimension
by Weinberger [W56], who came up with a new strategy for the proof.

Although the Szegö–Weinberger inequality appears to be the analog for Neu-
mann eigenvalues of the Rayleigh–Faber–Krahn inequality, its proof is completely
different. The reason is that the first non-trivial Neumann eigenfunction must be
orthogonal to the constant function, and thus it must have a change of sign. The
simple symmetrization procedure that is used to establish the Rayleigh–Faber–
Krahn inequality can therefore not work.

In general, when dealing with Neumann problems, one has to take into account
that the spectrum of the respective Laplace operator on a bounded domain is
very unstable under perturbations. One can change the spectrum arbitrarily much
by only a slight modification of the domain, and if the boundary is not smooth
enough, the Laplacian may even have essential spectrum. A sufficient condition for
the spectrum of −∆Ω

N to be purely discrete is that Ω is bounded and has a Lipschitz
boundary [D96]. We write 0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ . . . for the sequence of
Neumann eigenvalues on such a domain Ω.

Theorem 5.1 (Szegö–Weinberger inequality). Let Ω ⊂ Rn be an open bounded
domain with smooth boundary such that the Laplace operator on Ω with Neumann
boundary conditions has purely discrete spectrum. Then

(5.1) µ1(Ω) ≤ µ1(Ω?),

where Ω? ⊂ Rn is a ball with the same n-volume as Ω. Equality holds if and only
if Ω itself is a ball.

Proof. By a standard separation of variables one shows that µ1(Ω?) is n-fold
degenerate and that a basis of the corresponding eigenspace can be written in the
form {g(r)rjr

−1}j=1,...,n. The function g can be chosen to be positive and satisfies
the differential equation

(5.2) g′′ +
n− 1

r
g′ +

(
µ1(Ω?)− n− 1

r2

)
g = 0, 0 < r < r1,

where r1 is the radius of Ω?. Further, g(r) vanishes at r = 0 and its derivative has
its first zero at r = r1. We extend g by defining g(r) = limr′↑r1 g(r′) for r ≥ r1.

31
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Then g is differentiable on R and if we set fj(~r) := g(r)rjr
−1 then fj ∈ W 1,2(Ω) for

j = 1 . . . , n. To apply the min-max principle with fj as a test function for µ1(Ω)
we have to make sure that fj is orthogonal to the first (trivial) eigenfunction, i.e.,
that

(5.3)
∫

Ω

fj dnr = 0, j = 1, . . . , n.

We argue that this can be achieved by some shift of the domain Ω: Since Ω is
bounded we can find a ball B that contains Ω. Now define the vector field ~b : Rn →
Rn by its components

bj(~v) =
∫

Ω+~v

fj(~r) dnr, ~v ∈ Rn.

For ~v ∈ ∂B we have

~v ·~b(~v) =
∫

Ω+~v

~v · ~r
r

g(r) dnr

=
∫

Ω

~v · (~r + ~v)
|~r + ~v| g(|~r + ~v|) dnr

≥
∫

Ω

|~v|2 − |v| · |r|
|~r + ~v| g(|~r + ~v|) dnr > 0.

Thus~b is a vector field that points outwards on every point of ∂B. By an application
of the Brouwer’s fixed–point theorem (see Theorem 7.3 in the Appendix) this means
that ~b(~v0) = 0 for some ~v0 ∈ B. Thus, if we shift Ω by this vector, condition (5.3)
is satisfied and we can apply the min-max principle with the fj as test functions
for the first non-zero eigenvalue:

µ1(Ω) ≤
∫
Ω
|∇fj | dnr∫
Ω

f2
j dnr

=

∫
Ω

(
g′2(r)r2

j r−2 + g2(r)(1− r2
j r−2)r−2

)
dnr

∫
Ω

g2r2
j r−2 dnr

.

We multiply each of these inequalities by the denominator and sum up over j to
obtain

(5.4) µ1(Ω) ≤
∫
Ω

B(r) dnr∫
Ω

g2(r) dnr

with B(r) = g′2(r) + (n − 1)g2(r)r−2. Since r1 is the first zero of g′, the function
g is non-decreasing. The derivative of B is

B′ = 2g′g′′ + 2(n− 1)(rgg′ − g2)r−3.

For r ≥ r1 this is clearly negative since g is constant there. For r < r1 we can use
equation (5.2) to show that

B′ = −2µ1(Ω?)gg′ − (n− 1)(rg′ − g)2r−3 < 0.

If the following we will use the method of rearrangements, which was described in
Chapter 3. To avoid confusions, we use a more precise notation at this point: We
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introduce BΩ : Ω → R , BΩ(~r) = B(r) and analogously gΩ : Ω → R, gΩ(~r) = g(r).
Then equation (5.4) yields, using Theorem 3.7 in the third step:

(5.5) µ1(Ω) ≤
∫
Ω

BΩ(~r) dnr∫
Ω

g2
Ω(~r) dnr

=

∫
Ω? B?

Ω(~r) dnr∫
Ω? g2

?Ω(~r) dnr
≤

∫
Ω? B(r) dnr∫
Ω? g2(r) dnr

= µ1(Ω?)

Equality holds obviously if Ω is a ball. In any other case the third step in (5.5) is
a strict inequality. ¤

It is rather straightforward to generalize the Szegö–Weinberger inequality to
domains in hyperbolic space. For domains on spheres, on the other hand, the
corresponding inequality has not been established yet in full generality. At present,
the most general result is due to Ashbaugh and Benguria: In [AB95] they show that
an analog of the Szegö–Weinberger inequality holds for domains that are contained
in a hemisphere.

5.1. Bibliographical Remarks

i) In 1952, Kornhauser and Stakgold [Journal of Mathematics and Physics 31, 45–54
(1952)] conjectured that the lowest nontrivial Neumann eigenvalue for a smooth bounded
domain Ω in R2 satisfies the isoperimetric inequality

µ1(Ω) ≤ µ1(Ω
∗) =

πp2

A
,

where Ω∗ is a disk with the same area as Ω, and p = 1.8412 . . . is the first positive zero of
the derivative of the Bessel function J1. This conjecture was proven by G. Szegö in 1954,
using conformal maps [see, G. Szegö, Inequalities for certain eigenvalues of a membrane
of given area, J. Rational Mech. Anal. 3, 343–356 (1954)]. The extension to n dimensions
was proven by H. Weinberger [H. F. Weinberger, J. Rational Mech. Anal. 5, 633–636
(1956)].

ii) For the case of mixed boundary conditions, Marie–Helene Bossel [Membranes élastiquement
liées inhomogénes ou sur une surface: une nouvelle extension du théoreme isopérimétrique
de Rayleigh–Faber–Krahn, Z. Angew. Math. Phys. 39, 733–742 (1988)] proved the analog
of the Rayleigh–Faber–Krahn inequality.

iii) Very recently, A. Girouard, N. Nadirashvili and I. Polterovich proved that the second
positive eigenvalue of a bounded simply connected planar domain of a given area does
not exceed the first positive Neumann eigenvalue on a disk of a twice smaller area (see,
Maximization of the second positive Neumann eigenvalue for planar domains, preprint
(2008)). For a review of optimization of eigenvalues with respect to the geometry of the
domain, see the recent monograph of A. Henrot [H06].





CHAPTER 6

The Payne–Pólya–Weinberger inequality

6.1. Introduction

A further isoperimetric inequality is concerned with the second eigenvalue of
the Dirichlet–Laplacian on bounded domains. In 1955 Payne, Pólya and Wein-
berger (PPW) showed that for any open bounded domain Ω ⊂ R2 the bound
λ2(Ω)/λ1(Ω) ≤ 3 holds [PPW55, PPW56]. Based on exact calculations for sim-
ple domains they also conjectured that the ratio λ2(Ω)/λ1(Ω) is maximized when
Ω is a circular disk, i.e., that

(6.1)
λ2(Ω)
λ1(Ω)

≤ λ2(Ω?)
λ1(Ω?)

=
j2
1,1

j2
0,1

≈ 2.539 for Ω ⊂ R2.

Here, jn,m denotes the mth positive zero of the Bessel function Jn(x). This con-
jecture and the corresponding inequalities in n dimensions were proven in 1991 by
Ashbaugh and Benguria [AB91, AB92a, AB92b]. Since the Dirichlet eigenval-
ues on a ball are inversely proportional to the square of the ball’s radius, the ratio
λ2(Ω?)/λ1(Ω?) does not depend on the size of Ω?. Thus we can state the PPW
inequality in the following form:

Theorem 6.1 (Payne–Pólya–Weinberger inequality). Let Ω ⊂ Rn be an open
bounded domain and S1 ⊂ Rn a ball such that λ1(Ω) = λ1(S1). Then

(6.2) λ2(Ω) ≤ λ2(S1)

with equality if and only if Ω is a ball.

Here the subscript 1 on S1 reflects the fact that the ball S1 has the same first
Dirichlet eigenvalue as the original domain Ω The inequalities (6.1) and (6.2) are
equivalent in Euclidean space in view of the mentioned scaling properties of the
eigenvalues. Yet when one considers possible extensions of the PPW inequality to
other settings, where λ2/λ1 varies with the radius of the ball, it turns out that an
estimate in the form of Theorem 6.1 is the more natural result. In the case of a
domain on a hemisphere, for example, λ2/λ1 on balls is an increasing function of
the radius. But by the Rayleigh–Faber–Krahn inequality for spheres the radius of
S1 is smaller than the one of the spherical rearrangement Ω?. This means that an
estimate in the form of Theorem 6.1, interpreted as

λ2(Ω)
λ1(Ω)

≤ λ2(S1)
λ1(S1)

, Ω, S1 ⊂ Sn,

is stronger than an inequality of the type (6.1).
On the other hand, we will see that in the hyperbolic space λ2/λ1 on balls is

a strictly decreasing function of the radius. In this case we can apply the follow-
ing argument to see that an estimate of the type (6.1) cannot possibly hold true:

35
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Consider a domain Ω that is constructed by attaching very long and thin tentacles
to the ball B. Then the first and second eigenvalues of the Laplacian on Ω are
arbitrarily close to the ones on B. The spherical rearrangement of Ω though can
be considerably larger than B. This means that

λ2(Ω)
λ1(Ω)

≈ λ2(B)
λ1(B)

>
λ2(Ω?)
λ1(Ω?)

, B, Ω ⊂ Hn,

clearly ruling out any inequality in the form of (6.1).
The proof of the PPW inequality (6.2) is somewhat similar to that of the

Szegö–Weinberger inequality (see Chapter 5), but considerably more difficult. The
additional complications mainly stem from the fact that in the Dirichlet case the
first eigenfunction of the Laplacian is not known explicitly, while in the Neumann
case it is just constant. We will give the full proof of the PPW inequality in the
following three sections. Since it is quite long, a brief outline is in order:

The proof is organized in six steps. In the first one we use the min–max principle
to derive an estimate for the eigenvalue gap λ2(Ω) − λ1(Ω), depending on a test
function for the second eigenvalue. In the second step we define such a function and
then show in the third step that it actually satisfies all requirements to be used in
the gap formula. In the fourth step we put the test function into the gap inequality
and then estimate the result with the help of rearrangement techniques. These
depend on the monotonicity properties of two functions g and B, which are to be
defined in the proof, and on a Chiti comparison argument. The later is a special
comparison result which establishes a crossing property between the symmetric
decreasing rearrangement of the first eigenfunction on Ω and the first eigenfunction
on S1. We end up with the inequality λ2(Ω)−λ1(Ω) ≤ λ2(S1)−λ1(S1), which yields
(6.2). In the remaining two steps we prove the mentioned monotonicity properties
and the Chiti comparison result. We remark that from the Rayleigh–Faber–Krahn
inequality follows S1 ⊂ Ω?, a fact that is used in the proof of the Chiti comparison
result. Although it enters in a rather subtle manner, the Rayleigh–Faber–Krahn
inequality is an important ingredient of the proof of the PPW inequality.

6.2. Proof of the Payne–Pólya–Weinberger inequality

First step: We derive the ‘gap formula’ for the first two eigenvalues of the
Dirichlet–Laplacian on Ω. We call u1 : Ω → R+ the positive normalized first
eigenfunction of −∆D

Ω . To estimate the second eigenvalue we will use the test
function Pu1, where P : Ω → R is is chosen such that Pu1 is in the form domain
of −∆D

Ω and

(6.3)
∫

Ω

Pu2
1 drn = 0.

Then we conclude from the min–max principle that

λ2(Ω)− λ1(Ω) ≤
∫
Ω

(|∇(Pu1)|2 − λ1P
2u2

1

)
drn

∫
Ω

P 2u2
1 drn

=

∫
Ω

(|∇P |2u2
1 + (∇P 2)u1∇u1 + P 2|∇u1|2 − λ1P

2u2
1

)
drn

∫
Ω

P 2u2
1 drn

(6.4)

If we perform an integration by parts on the second summand in the numerator
of (6.4), we see that all summands except the first cancel. We obtain the gap
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inequality

(6.5) λ2(Ω)− λ1(Ω) ≤
∫
Ω
|∇P |2u2

1 drn

∫
Ω

P 2u2
1 drn

.

Second step: We need to fix the test function P . Our choice will be dictated
by the requirement that equality should hold in (6.5) if Ω is a ball, i.e., if Ω = S1

up to translations. We assume that S1 is centered at the origin of our coordinate
system and call R1 its radius. We write z1(r) for the first eigenfunction of the
Dirichlet Laplacian on S1. This function is spherically symmetric with respect
to the origin and we can take it to be positive and normalized in L2(S1). The
second eigenvalue of −∆D

S1
in n dimensions is n–fold degenerate and a basis of the

corresponding eigenspace can be written in the form z2(r)rjr
−1 with z2 ≥ 0 and

j = 1, . . . , n. This is the motivation to choose not only one test function P , but
rather n functions Pj with j = 1, . . . , n. We set

Pj = rjr
−1g(r)

with

g(r) =

{
z2(r)
z1(r)

for r < R1,

limr′↑R1
z2(r

′)
z1(r′)

for r ≥ R1.

We note that Pju1 is a second eigenfunction of −∆D
Ω if Ω is a ball which is centered

at the origin.
Third step: It is necessary to verify that the Pju1 are admissible test functions.

First, we have to make sure that condition (6.3) is satisfied. We note that Pj

changes when Ω (and u1 with it) is shifted in Rn. Since these shifts do not change
λ1(Ω) and λ2(Ω), it is sufficient to show that Ω can be moved in Rn such that (6.3)
is satisfied for all j ∈ {1, . . . , n}. To this end we define the function

~b(~v) =
∫

Ω+~v

u2
1(|~r − ~v|)~r

r
g(r) drn for ~v ∈ Rn.

Since Ω is a bounded domain, we can choose some closed ball D, centered at the
origin, such that Ω ⊂ D. Then for every ~v ∈ ∂D we have

~v ·~b(~v) =
∫

Ω

~v · u2
1(r)

~r + ~v

|~r + ~v|g(|~r + ~v|) drn

>

∫

Ω

u2
1(r)

|~v|2 − |~v| · |~r|
|~r + ~v| g(|~r + ~v|) drn > 0

Thus the continuous vector-valued function ~b(~v) points strictly outwards every-
where on ∂D. By Theorem 7.3, which is a consequence of the Brouwer fixed–point
theorem, there is some ~v0 ∈ D such that ~b(~v0) = 0. Now we shift Ω by this vector,
i.e., we replace Ω by Ω−~v0 and u1 by the first eigenfunction of the shifted domain.
Then the test functions Pju1 satisfy the condition (6.3).

The second requirement on Pju1 is that it must be in the form domain of
−∆D

Ω , i.e., in H1
0 (Ω): Since u1 ∈ H1

0 (Ω) there is a sequence {vn ∈ C1(Ω)}n∈N
of functions with compact support such that | · |h − limn→∞ vn = u1, using the
definition (4.1) of | · |h. The functions Pjvn also have compact support and one can
check that Pjvn ∈ C1(Ω) (Pj is continuously differentiable since g′(R1) = 0). We
have | · |h − limn→∞ Pjvn = Pju1 and thus Pju1 ∈ H1

0 (Ω).
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Fourth step: We multiply the gap inequality (6.5) by
∫

P 2u2
1 dx and put in our

special choice of Pj to obtain

(λ2 − λ1)
∫

Ω

r2
j

r2
g2(r)u2

1(r) drn ≤
∫

Ω

∣∣∣∇
(rj

r
g(r)

)∣∣∣
2

u2
1(r) drn

=
∫

Ω

(∣∣∣∇rj

r

∣∣∣
2

g2(r) +
r2
j

r2
g′(r)2

)
u2

1(r) drn.

Now we sum these inequalities up over j = 1, . . . , n and then divide again by the
integral on the left hand side to get

(6.6) λ2(Ω)− λ1(Ω) ≤
∫
Ω

B(r)u2
1(r) drn

∫
Ω

g2(r)u2
1(r) drn

with

(6.7) B(r) = g′(r)2 + (n− 1)r−2g(r)2.

If the following we will use the method of rearrangements, which was described in
Chapter 3. To avoid confusions, we use a more precise notation at this point: We
introduce BΩ : Ω → R , BΩ(~r) = B(r) and analogously gΩ : Ω → R, gΩ(~r) = g(r).
Then equation (6.6) can be written as

(6.8) λ2(Ω)− λ1(Ω) ≤
∫
Ω

BΩ(~r)u2
1(~r) drn

∫
Ω

g2
Ω(~r)u2

1(~r) drn
.

Then by Theorem 3.8 the following inequality is also true:

(6.9) λ2(Ω)− λ1(Ω) ≤
∫
Ω? B?

Ω(~r)u?
1(~r)

2 drn

∫
Ω? g2

Ω?(~r)u
?
1(~r)2 drn

.

Next we use the very important fact that g(r) is an increasing function and B(r) is
a decreasing function, which we will prove in step five below. These monotonicity
properties imply by Theorem 3.7 that B?

Ω(~r) ≤ B(r) and gΩ?(~r) ≥ g(r). Therefore

(6.10) λ2(Ω)− λ1(Ω) ≤
∫
Ω? B(r)u?

1(r)
2 drn

∫
Ω? g2(r)u?

1(r)2 drn
.

Finally we use the following version of Chiti’s comparison theorem to estimate the
right hand side of (6.10):

Lemma 6.2 (Chiti comparison result). There is some r0 ∈ (0, R1) such that

z1(r) ≥ u?
1(r) for r ∈ (0, r0) and

z1(r) ≤ u?
1(r) for r ∈ (r0, R1).

We remind the reader that the function z1 denotes the first Dirichlet eigenfunc-
tion for the Laplacian defined on S1. Applying Lemma 6.2, which will be proven
below in step six, to (6.10) yields

(6.11) λ2(Ω)− λ1(Ω) ≤
∫
Ω? B(r)z1(r)2 drn

∫
Ω? g2(r)z1(r)2 drn

= λ2(S1)− λ1(S1).

Since S1 was chosen such that λ1(Ω) = λ1(S1) the above relation proves that
λ2(Ω) ≤ λ2(S1). It remains the question: When does equality hold in (6.2)? It is
obvious that equality does hold if Ω is a ball, since then Ω = S1 up to translations.
On the other hand, if Ω is not a ball, then (for example) the step from (6.10) to
(6.11) is not sharp. Thus (6.2) is a strict inequality if Ω is not a ball.
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6.3. Monotonicity of B and g

Fifth step: We prove that g(r) is an increasing function and B(r) is a decreasing
function. In this step we abbreviate λi = λi(S1). The functions z1 and z2 are
solutions of the differential equations

−z′′1 −
n− 1

r
z′1 − λ1z1 = 0,(6.12)

−z′′2 −
n− 1

r
z′2 +

(
n− 1

r2
− λ2

)
z2 = 0

with the boundary conditions

(6.13) z′1(0) = 0, z1(R1) = 0, z2(0) = 0, z2(R1) = 0.

We define the function

(6.14) q(r) :=





rg′(r)
g(r) for r ∈ (0, R1),

limr′↓0 q(r′) for r = 0,
limr′↑R1 q(r′) for r = R1.

Proving the monotonicity of B and g is thus reduced to showing that 0 ≤ q(r) ≤ 1
and q′(r) ≤ 0 for r ∈ [0, R1]. Using the definition of g and the equations (6.12),
one can show that q(r) is a solution of the Riccati differential equation

(6.15) q′ = (λ1 − λ2)r +
(1− q)(q + n− 1)

r
− 2q

z′1
z1

.

It is straightforward to establish the boundary behavior

q(0) = 1, q′(0) = 0, q′′(0) =
2
n

((
1 +

2
n

)
λ1 − λ2

)

and

q(R1) = 0.

Lemma 6.3. For 0 ≤ r ≤ R1 we have q(r) ≥ 0.

Proof. Assume the contrary. Then there exist two points 0 < s1 < s2 ≤ R1

such that q(s1) = q(s2) = 0 but q′(s1) ≤ 0 and q′(s2) ≥ 0. If s2 < R1 then the
Riccati equation (6.15) yields

0 ≥ q′(s1) = (λ1 − λ2)s1 +
n− 1

s1
> (λ1 − λ2)s2 +

n− 1
s2

= q′(s2) ≥ 0,

which is a contradiction. If s2 = R1 then we get a contradiction in a similar way
by

0 ≥ q′(s1) = (λ1 − λ2)s1 +
n− 1

s1
> (λ1 − λ2)R1 +

n− 1
R1

= 3q′(R1) ≥ 0.

¤

In the following we will analyze the behavior of q′ according to (6.15), consid-
ering r and q as two independent variables. For the sake of a compact notation we



40 6. THE PAYNE–PÓLYA–WEINBERGER INEQUALITY

will make use of the following abbreviations:

p(r) = z′1(r)/z1(r)
Ny = y2 − n + 1

Qy = 2yλ1 + (λ2 − λ1)Nyy−1 − 2(λ2 − λ1)

My = N2
y /(2y)− (n− 2)2y/2

We further define the function

(6.16) T (r, y) := −2p(r)y − (n− 2)y + Ny

r
− (λ2 − λ1)r.

Then we can write (6.15) as

q′(r) = T (r, q(r)).

The definition of T (r, y) allows us to analyze the Riccati equation for q′ considering
r and q(r) as independent variables. For r going to zero, p is O(r) and thus

T (r, y) =
1
r

((n− 1 + y)(1− y)) +O(r) for y fixed.

Consequently,

limr→0 T (r, y) = +∞ for 0 ≤ y < 1 fixed,
limr→0 T (r, y) = 0 for y = 1 and
limr→0 T (r, y) = −∞ for y > 1 fixed.

The partial derivative of T (r, y) with respect to r is given by

(6.17) T ′ =
∂

∂r
T (r, y) = −2yp′ +

(n− 2)y
r2

+
Ny

r2
− (λ2 − λ1).

In the points (r, y) where T (r, y) = 0 we have, by (6.16),

(6.18) p|T=0 = −n− 2
2r

− Ny

2yr
− (λ2 − λ1)r

2y
.

From (6.12) we get the Riccati equation

(6.19) p′ + p2 +
n− 1

r
p + λ1 = 0.

Putting (6.18) into (6.19) and the result into (6.17) yields

(6.20) T ′|T=0 =
My

r2
+

(λ2 − λ1)2

2y
r2 + Qy.

Lemma 6.4. There is some r0 > 0 such that q(r) ≤ 1 for all r ∈ (0, r0) and
q(r0) < 1.

Proof. Suppose the contrary, i.e., q(r) first increases away from r = 0. Then,
because q(0) = 1 and q(R1) = 0 and because q is continuous and differentiable, we
can find two points s1 < s2 such that q̂ := q(s1) = q(s2) > 1 and q′(s1) > 0 > q′(s2).
Even more, we can chose s1 and s2 such that q̂ is arbitrarily close to one. Writing
q̂ = 1 + ε with ε > 0, we can calculate from the definition of Qy that

Q1+ε = Q1 + εn (λ2 − (1− 2/n)λ1) +O(ε2).

The term in brackets can be estimated by

λ2 − (1− 2/n)λ1 > λ2 − λ1 > 0.
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We can also assume that Q1 ≥ 0, because otherwise q′′(0) = 2
n2 Q1 < 0 and Lemma

6.4 is immediately true. Thus, choosing R1 and r2 such that ε is sufficiently small,
we can make sure that Qq̂ > 0.

Now consider T (r, q̂) as a function of r for our fixed q̂. We have T (s1, q̂) > 0 >
T (s2, q̂) and the boundary behavior T (0, q̂) = −∞. Consequently, T (r, q̂) changes
its sign at least twice on [0, R1] and thus we can find two zeros 0 < ŝ1 < ŝ2 < R1

of T (r, q̂) such that

(6.21) T ′(ŝ1, q̂) ≥ 0 and T ′(ŝ2, q̂) ≤ 0.

But from (6.20), together with Qq̂ > 0, one can see easily that this is impossible,
because the right hand side of (6.20) is either positive or increasing (depending on
Mq̂). This is a contradiction to our assumption that q first increases away from
r = 0, proving Lemma 6.4. ¤

Lemma 6.5. For all 0 ≤ r ≤ R1 the inequality q′(r) ≤ 0 holds.

Proof. Assume the contrary. Then, because of q(0) = 1 and q(R1) = 0, there
are three points s1 < s2 < s3 in (0, R1) with 0 < q̂ := q(s1) = q(s2) = q(s3) < 1 and
q′(s1) < 0, q′(s2) > 0, q′(s3) < 0. Consider the function T (r, q̂), which coincides
with q′(r) at s1, s2, s3. Taking into account its boundary behavior at r = 0, it is
clear that T (r, q̂) must have at least the sign changes positive-negative-positive-
negative. Thus T (r, q̂) has at least three zeros ŝ1 < ŝ2 < ŝ3 with the properties

T ′(ŝ1, q̂) ≤ 0, T ′(ŝ2, q̂) ≥ 0, T ′(ŝ3, q̂) ≤ 0.

Again one can see from (6.20) that this is impossible, because the term on the
right hand side is either a strictly convex or a strictly increasing function of r. We
conclude that Lemma 6.5 is true. ¤

Altogether we have shown that 0 ≤ q(r) ≤ 1 and q′(r) ≤ 0 for all r ∈ (0, R1),
which proves that g is increasing and B is decreasing.

6.4. The Chiti comparison result

Sixth step: We prove Lemma 6.2: Here and in the sequel we write short-hand
λ1 = λ1(Ω) = λ1(S1). We introduce a change of variables via s = Cnrn, where
Cn is the volume of the n–dimensional unit ball. Then by Definition 3.2 we have
u]

1(s) = u?
1(r) and z]

1(s) = z1(r).

Lemma 6.6. For the functions u]
1(s) and z]

1(s) we have

− du]
1

ds
≤ λ1n

−2C−2/n
n sn/2−2

∫ s

0

u]
1(w) dw,(6.22)

− dz]
1

ds
= λ1n

−2C−2/n
n sn/2−2

∫ s

0

z]
1(w) dw.(6.23)

Proof. We integrate both sides of −∆u1 = λ1u1 over the level set Ωt := {~r ∈
Ω : u1(~r) > t} and use Gauss’ Divergence Theorem to obtain

(6.24)
∫

∂Ωt

|∇u1|Hn−1( dr) =
∫

Ωt

λ1 u1(~r) dnr,
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where ∂Ωt = {~r ∈ Ω : u1(~r) = t}. Now we define the distribution function µ(t) =
|Ωt|. Then by Theorem 3.9 we have

(6.25)
∫

∂Ωt

|∇u1|Hn−1( dr) ≥ −n2C2/n
n

µ(t)2−2/n

µ′(t)
.

The left sides of (6.24) and (6.25) are the same, thus

−n2C2/n
n

µ(t)2−2/n

µ′(t)
≤

∫

Ωt

λ1 u1(~r) dnr

=
∫ (µ(t)/Cn)1/n

0

nCnrn−1λ1u
?
1(r) dr.

Now we perform the change of variables r → s on the right hand side of the above
chain of inequalities. We also chose t to be u]

1(s). Using the fact that u]
1 and

µ are essentially inverse functions to one another, this means that µ(t) = s and
µ′(t)−1 = (u]

1)
′(s). The result is (6.22). Equation (6.23) is proven analogously,

with equality in each step. ¤

Lemma 6.6 enables us to prove Lemma 6.2. The function z]
1 is continuous on

(0, |S1|) and u]
1 is continuous on (0, |Ω?|). By the normalization of u]

1 and z]
1 and

because S1 ⊂ Ω? it is clear that either z]
1 ≥ u]

1 on (0, |S1|) or u]
1 and z]

1 have at
least one intersection on this interval. In the first case there is nothing to prove,
simply setting r0 = R1 in Lemma 6.2. In the second case we have to show that
there is no intersection of u]

1 and z]
1 such that u]

1 is greater than z]
1 on the left and

smaller on the right. So we assume the contrary, i.e., that there are two points
0 ≤ s1 < s2 < |S1| such that u]

1(s) > z]
1(s) for s ∈ (s1, s2), u]

1(s2) = z]
1(s2) and

either u]
1(s1) = z]

1(s1) or s1 = 0. We set

(6.26) v](s) =





u]
1(s) on [0, s1] if

∫ s1

0
u]

1(s) ds >
∫ s1

0
z]
1(s) ds,

z]
1(s) on [0, s1] if

∫ s1

0
u]

1(s) ds ≤ ∫ s1

0
z]
1(s) ds,

u]
1(s) on [s1, s2],

z]
1(s) on [s2, |S1|].

Then one can convince oneself that because of (6.22) and (6.23)

(6.27) − dv]

ds
≤ λ1n

−2C−2/n
n sn/2−2

∫ s

0

v](s′) ds′

for all s ∈ [0, |S1|]. Now define the test function v(r) = v](Cnrn). Using the
Rayleigh-Ritz characterization of λ1, then (6.27) and finally an integration by parts,
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we get (if z1 and u1 are not identical)

λ1

∫

S1

v2(r) dx <

∫

S1

|∇v|2 dx =
∫ |S1|

0

(
nCnrn−1 v]′(s)

)2 ds

≤ −
∫ |S1|

0

v]′(s)λ1

∫ s

0

v](s′) ds′ ds

= λ1

∫ |S1|

0

v](s)2 ds− λ1

[
v](s)

∫ s

0

v](s′) ds′
]S1

0

≤ λ1

∫

S1

v2(r) dx

Comparing the first and the last term in the above chain of (in)equalities reveals a
contradiction to our assumption that the intersection point s2 exists, thus proving
Lemma 6.2.

6.5. Schrödinger operators

Theorem 6.1 can be extended in several directions. One generalization, which
has been considered by Benguria and Linde in [BL06], is to replace the Laplace
operator on the domain Ω ⊂ Rn by a Schrödinger operator H = −∆ + V . In this
case the question arises which is the most suitable comparison operator for H. In
analogy to the PPW inequality for the Laplacian, it seems natural to compare the
eigenvalues of H to those of another Schrödinger operator H̃ = −∆ + Ṽ , which is
defined on a ball and has the same lowest eigenvalue as H. The potential Ṽ should
be spherically symmetric and it should reflect some properties of V , but it will also
have to satisfy certain requirements in order for the PPW type estimate to hold.
The precise result is stated in Theorem 6.7 below, which can be considered as a
natural generalization of Theorem 6.1 to Schrödinger operators.

We assume that Ω is open and bounded and that V : Ω → R+ is a non-negative
potential from L1(Ω). Then we can define the Schrödinger operator HV = −∆+V
on Ω in the same way as we did in Section 4.2, i.e., HV is positive and self-adjoint
in L2(Ω) and has purely discrete spectrum. We call λi(Ω, V ) its i-th eigenvalue
and, as usual, we write V? for the symmetric increasing rearrangement of V .

Theorem 6.7. Let S1 ⊂ Rn be a ball centered at the origin and of radius R1

and let Ṽ : S1 → R+ be a radially symmetric non-negative potential such that
Ṽ (r) ≤ V?(r) for all 0 ≤ r ≤ R1 and λ1(Ω, V ) = λ1(S1, Ṽ ). If Ṽ (r) satisfies the
conditions

a) Ṽ (0) = Ṽ ′(0) = 0 and
b) Ṽ ′(r) exists and is increasing and convex,

then

(6.28) λ2(Ω, V ) ≤ λ2(S1, Ṽ ).

If V is such that V? itself satisfies the conditions a) and b) of the theorem, the
best bound is obtained by choosing Ṽ = V? and then adjusting the size of S1 such
that λ1(Ω, V ) = λ1(S1, V?) holds. (Note that S1 ⊂ Ω? by Theorem 4.2). In this
case Theorem 6.7 is a typical PPW result and optimal in the sense that equality
holds in (6.28) if Ω is a ball and V = V?. For a general potential V we still get a
non-trivial bound on λ2(Ω, V ) though it is not sharp anymore.
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For further reference we state the following theorem, which is a direct conse-
quence of Theorem 6.7 and Theorem 3.7:

Theorem 6.8. Let Ṽ : Rn → R+ be a radially symmetric positive potential that
satisfies the conditions a) and b) of Theorem 6.1. Further, assume that Ω ⊂ Rn is
an open bounded domain and that S1 ⊂ Rn be the open ball (centered at the origin)
such that λ1(Ω, Ṽ ) = λ1(S1, Ṽ ). Then

λ2(Ω, Ṽ ) ≤ λ2(S1, Ṽ ).

The proof of Theorem 6.7 is similar to the one of Theorem 6.1 and can be found
in [BL06]. One of the main differences occurs in step five (see Section 6.3), since
the potential Ṽ (r) now appears in the Riccati equation for p. It turns out that
the conditions a) and b) in Theorem 6.7 are required to establish the monotonicity
properties of q. A second important difference is that a second eigenfunction of
a Schrödinger operator with a spherically symmetric potential can not necessarily
be written in the form u2(r)rjr

−1. It has been shown by Ashbaugh and Benguria
[AB88] that it can be written in this form if rV (r) is convex. On the other hand,
the second eigenfunction is radially symmetric (with a spherical nodal surface) if
rV (r) is concave. This fact, which is also known as the Baumgartner–Grosse–
Martin Inequality [BGM84], is another reason why the conditions a) and b) of
Theorem 6.7 are needed.

6.6. Gaussian space

Theorem 6.8 has direct consequences for the eigenvalues of the Laplace operator
−∆G in Gaussian space, which had been defined in Section 4.3. In this section we
write λ−i (Ω) for the i-th eigenvalue of −∆G on some domain Ω.

Theorem 6.9. Let Ω ⊂ Rn be an open bounded domain and assume that S1 ⊂
Rn is a ball, centered at the origin, such that λ−1 (Ω) = λ−1 (S1). Then

λ−2 (Ω) ≤ λ−2 (S1).

Proof. If Ψ is an eigenfunction of −∆G on Ω then Ψe−r2/2 is an eigenfunction
of the Dirichlet-Schrödinger operator −∆+r2 on Ω, and vice versa. The eigenvalues
are related by

λ−i (Ω) = λ(Ω, r2 − n),

where we keep using the notation from Section 6.5. Theorem 6.9 now follows
directly from Theorem 6.8, setting Ṽ (r) = r2. ¤

6.7. Spaces of constant curvature

There are generalizations of the Payne-Pólya-Weinberger inequality to spaces of
constant curvature. Ashbaugh and Benguria showed in [AB01] that Theorem 6.1
remains valid if one replaces the Euclidean space Rn by a hemisphere of Sn and ‘ball’
by ‘geodesic ball’. Similar to the Szegö–Weinberger inequality, it is still an open
problem to prove a Payne–Pólya–Weinberger result for the whole sphere. Although
there seem to be no counterexamples known that rule out such a generalization, the
original scheme of proving the PPW inequality is not likely to work. One reason
is that numerical studies show the function g to be not monotone on the whole
sphere.
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For the hyperbolic space, on the other hand, things are settled. Following the
general lines of the original proof, Benguria and Linde established in [BL07] a
PPW type inequality that holds in any space of constant negative curvature.





CHAPTER 7

Appendix

7.1. The layer-cake formula

Theorem 7.1. Let ν be a measure on the Borel sets of R+ such that Φ(t) :=
ν([0, t)) is finite for every t > 0. Let further (Ω, Σ,m) be a measure space and v a
non-negative measurable function on Ω. Then

(7.1)
∫

Ω

Φ(v(x))m( dx) =
∫ ∞

0

m({x ∈ Ω : v(x) > t})ν( dt).

In particular, if m is the Dirac measure at some point x ∈ Rn and ν( dt) = dt then
(7.1) takes the form

(7.2) v(x) =
∫ ∞

0

χ{y∈Ω:v(y)>t}(x) dt.

Proof. Since m({x ∈ Ω : v(x) > t}) =
∫
Ω

χ{v>t}(x)m( dx) we have, using
Fubini’s theorem,

∫ ∞

0

m({x ∈ Ω : v(x) > t})ν( dt) =
∫

Ω

(∫ ∞

0

χ{v>t}(x)ν( dt)
)

m( dx).

Theorem 7.1 follows from observing that
∫ ∞

0

χ{v>t}(x)ν( dt) =
∫ v(x)

0

ν( dt) = Φ(v(x)).

¤

7.2. A consequence of the Brouwer fixed-point theorem

Theorem 7.2 (Brouwer’s fixed-point theorem). Let B ⊂ Rn be the unit ball
for n ≥ 0. If f : B → B is continuous then f has a fixed point, i.e., there is some
x ∈ B such that f(x) = x.

The proof appears in many books on topology, e.g., in [M75]. Brouwer’s
theorem can be applied to establish the following result:

Theorem 7.3. Let B ⊂ Rn (n ≥ 2) be a closed ball and ~b(~r) a continuous map
from B to Rn. If ~b points strictly outwards at every point of ∂B, i.e., if ~b(~r) ·~r > 0
for every ~r ∈ ∂B, then ~b has a zero in B.

Proof. Without losing generality we can assume that B is the unit ball cen-
tered at the origin. Since ~b is continuous and ~b(~r) · ~r > 0 on ∂B, there are two
constants 0 < r0 < 1 and p > 0 such that ~b(~r) · ~r > p for every ~r with r0 < |~r| ≤ 1.
We show that there is a constant c > 0 such that

| − c~b(~r) + ~r| < 1

47
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for all ~r ∈ B: In fact, for all ~r with |~r| ≤ r0 the constant c can be any positive
number below (sup~r∈B |~b(~r)|)−1(1 − r0). The supremum exists because |~b| is con-
tinuously defined on a compact set and therefore bounded. On the other hand, for
all ~r ∈ B with |~r| > r0 we have

| − c~b(~r) + ~r|2 = c2|~b(~r)|2 − 2c~b(~r) · ~r + |~r|2
≤ c2 sup

~r∈B
|~b|2 − 2cp + 1,

which is also smaller than one if one chooses c > 0 sufficiently small. Now set

~g(~r) = −c~b(~r) + ~r for ~r ∈ B.

Then ~g is a continuous mapping from B to B and by Theorem 7.2 it has some fixed
point ~r1 ∈ B, i.e., ~g(~r1) = ~r1 and ~b(~r1) = 0. ¤
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