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My first experience with algebraic equations came from a problem that my
maternal grandfather told me. He probably remembered it from his time as a
student, towards the end of the previous century [T.N. 1]. The problem in question
was the following: “A falcon perched in the branch of a tree observes the passage
of a flock of doves and says to them, ‘Goodbye, hundred doves!’ to which greeting
one of the doves replies, ‘You are mistaken, sir falcon, we are not a hundred. We,
plus as many as ourselves again, plus half as many, plus a quarter as many, plus
you, sir falcon, are a hundred.’ How many doves were in the flock?” When I heard
this problem for the first time I knew nothing of algebra, so I solved it by trying
various numbers, and after many attempts I obtained the correct answer: 36 doves.
In the first courses of algebra one encounters numerous problems like this, and so
appreciates how simple it is to solve them by reducing them to algebraic equations.
In the case of the problem of the doves, if one calls the number of doves x, one
can write the response of the dove to the greeting of the falcon as

x+ x+
1

2
x+

1

4
x+ 1 = 100. (1)

from which we obtain 11x/4 = 99 and, finally, x = 36.
Equation (1) is an algebraic equation of the first degree. Equations like this

and their solutions have been known since antiquity.
The type of equation that follows in difficulty is the equation of the second

degree

x2 + bx+ c = 0. (2)

Equations of the second degree were known to the Babylonians, although the
algebraic solution such as we know today appears probably for the first time in
the Arabic books of mathematics from the ninth century A.D. One of the most
well-known second-degree equations is the one which serves to determine the so-
called golden ratio. It is said that a segment is divided in the golden ratio if the
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ratio of the lesser and greater pieces is the same as the ratio of the greater piece
and the whole segment (see the figure below [T.N. 2]).

1− x x

If the whole segment has one unit of length (meters, centimeters or whatever it
may be) and we call the longer piece x, the segment will be divided in the golden
ratio as long as

1− x
x

=
x

1
,

which is to say, as long as x is the solution to the quadratic equation

x2 + x− 1 = 0,

whose only positive solution is x = (
√

5 − 1)/2 ≈ 0.61803. The golden ratio
was adopted as one of the norms of aesthetics in architecture and sculpture by the
Greeks in the fifth century B.C.

There are two equivalent forms of finding an algebraic solution to a second-
degree equation. One consists of adding to both sides the quantity (b2)/4 − c, to
obtain a square on the left side, that is

(x+
b

2
)2 =

b2

4
− c.

Finally, by taking the square root of both sides of the equation, we obtain the
well-known solutions:

x =
1

2
(−b±

√
b2 − 4c). (3)

In the second method we make a change of variable, with the aim of reducing
equation (2) to an equation of the form x2 = c̃, which is easy to solve. Therefore,
we let x = y+α. The idea is to choose α in such a way that we can eliminate the
linear term in x. We obtain

y2 + (2α + b)y + (α2 + bα + c) = 0.

We choose α in such a way that the coefficient in y cancels out, that is 2α+b = 0,
α = −b/2, and finally the equation is left as:

y2 =
b2

4
− c,
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from which y = ±
√
b2 − 4c/2. As x = y + α = y − (b/2), x remains given by

(3). For second-degree equations both methods are practically identical, but the
second can generalize to equations of a higher degree.

The general third-degree equation is of the form

x3 + bx2 + cx+ d = 0. (4)

The solution of the third-degree equation was published for the first time in
the Ars Magna by Gerolamo Cardano in 1545 [3]. Gerolamo Cardano took his
solutions from the works of Niccolò Tartaglia, although probably the first to find
a solution was Scipione del Ferro (1465–1526) (see boxes).

Gerolamo Cardano: Italian mathematician and physicist. Born in Pavia in
1501 and died in Rome in 1576 [11, p. 295–297]. He wrote books on arithmetic,
astronomy and physics. His best-known work is a treatise on algebra, the Ars
Magna [3]. He was a professor at the University of Bologna. He is the inventor of
the system of suspension that bears his name [T.N. 3].

Niccolò Fontana, called “Tartaglia”: Italian mathematician. Born in Brescia
around 1499 and died in Venice in 1557. Due to a speech impediment he was called
“Tartaglia” (i.e. “stutter”), which pseudonym he used to publish his works. He
was probably the first to apply mathematics to artillery. He published a treatise
on arithmetic and edited a version of the works of Euclid and Archimedes (1543).

The method of solving the cubic, just as it was published in Ars Magna, is the
following (see e.g. [7, p. 480]): first reduce the equation so that the quadratic
term does not appear. This is achieved by making the change of variable

x = z − b

3
,

so that the equation in z is of the form

z3 + c̃z + d̃ = 0, (5)

where the coefficients c̃ and d̃ are given in terms of the original coefficients by

c̃ = c− b2

3
and d̃ = d+

2b3

27
− bc

3
.

Now, with the object of solving equation (5) for z, we write z = u+v, in which
u and v will be determined later. So, equation (5) is written as
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u3 + v3 + (3uv + c̃)(u+ v) + d̃ = 0. (6)

Now we choose u and v so that the coefficient 3uv + c̃ cancels, that is v =
−c̃/(3u). In this way, equation (6) is written in terms of u and v in the following
manner:

u3 + v3 + d̃ = 0,

or, solely in terms of u,

u6 + d̃u3 − c̃3

27
= 0, (7)

which is a quadratic equation for u3. Solving it (observing here that we can
choose either of the two solutions; either way, v3 will be the other solution) we
obtain:

u = (− d̃
2

+

√
d̃2

4
+
c̃3

27
)(1/3)

and, given that u3 + v3 + d̃ = 0,

v = (− d̃
2
−

√
d̃2

4
+
c̃3

27
)(1/3).

Finally, x = u+ v − (b/3).

Scipione Del Ferro: Italian mathematician (1465–1526). Around 1515, while a
professor at the University of Bologna, he managed to solve the cubic equation of
the type x3 + mx = n, from which can certainly be derived the solution of the
general cubic. Del Ferro’s solution was known to Tartaglia through a student of
Del Ferro, Antonio Maria Fior. Finally the solution was known to Cardano, who
published it in the Ars Magna in 1545. Around these facts there have been woven
various legends (for more details see [4, Lecture 16, p. 172–181]).

The solution in the Ars Magna is relatively simple, but it has a problem:
although its deduction is easy to follow, it is difficult to remember the method of
solution. Moreover, it does not allow generalization of the method to solve the
quartic. Because of that, numerous authors, after the publication of the solution
in the Ars Magna, have found their own methods of solution. These gave rise,
in the beginning of the nineteenth century, to very interesting connections with
Group Theory, connections which finally permitted the Norwegian mathematician
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Niels Abel, in 1828, to demonstrate that there is no solution of the general fifth-
degree equation [1] (and therefore of any degree greater than or equal to 5) in
terms of simple operations (i.e. addition, subtraction, multiplication, division and
root extraction). The methods were later perfected by Galois [5]. Galois theory
is beyond the scope of this article, but a very good exposition appears in the
Collection “The Carus Mathematical Monographs” [6]. In what remains of this
article I will present a solution not very widespread in textbooks that allows one
at least to have an idea of why it is possible to resolve the cubic and the quartic,
but not equations of higher degree.

Let us return to the general cubic equation (4). It is not difficult to notice that
if we make the change of variables

x =
αy + β

γy + δ
(8)

in the cubic equation, with α, β, γ and δ being any parameters, the equation
for y will also be a cubic, of the form

y3 + b̃y2 + c̃y + d̃ = 0. (9)

The new coefficients b̃, c̃ and d̃ depend on the old ones, as well as the param-
eters of transformation α, β, γ and δ. Remember that to solve the second-degree
equation, by the second method displayed, we made a transformation of the form
x = y + α and used the parameter α to eliminate the linear term in y. Now the
idea is similar: we intend to choose the parameters of transformation (8) so that

the coefficients b̃ and c̃ cancel in (9). In this way we will have an equation of the

form y3 + d̃ = 0 which, of course, is very simple to solve. At first glance we have a
lot of freedom to choose the parameters (α, β, γ and δ) and fulfill our objective,
as we have four parameters at our disposal and only two coefficients to cancel.
But the truth is that of the four parameters only two are useful. In effect, if we
observe transformation (8), if we divide the numerator and the denominator from
the right side by δ it is written as

x =
(α/δ)y + (β/δ)

(γ/δ)y + 1
. (10)

We see that we have lost a parameter. The second observation is that if we
make the change of variables y = pz (that is, if we rescale the variable y) in (9)
we will not gain anything in our attempt to make the coefficients disappear: in
fact the only thing that happens to the “poor” coefficients before each change of
variable is that they are rescaled. In consequence, the most general transformation
of type (8) that we can do with the object of eliminating the coefficients of the
linear and quadratic terms is
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x =
(α/γ)z + β/δ

z + 1
,

having set (γ/δ)y = z, by virtue of the second observation previous. We can
now call A = (α/γ), B = β/δ, so that our most general transformation is of the
form

x =
Az +B

z + 1
(11)

and, as I hope I have convinced you, we have only two available coefficients (A
and B) with which to achieve our objective. Substituting (11) in (4), we obtain
the cubic equation for z:

(A3 + bA2 + cA+ d)z3 + Pz2 +Qz + (B3 + bB2 + cB + d) = 0, (12)

with the coefficients P and Q given by

P = 3A2B + b(A2 + 2AB) + c(B + 2A) + 3d

and

Q = 3AB2 + b(B2 + 2AB) + c(A+ 2B) + 3d.

We wish to choose A and B such that P = 0 and Q = 0, which is to say, A
and B are solutions to the equations

3A2B + b(A2 + 2AB) + c(B + 2A) + 3d = 0, (13)

and

3AB2 + b(B2 + 2AB) + c(A+ 2B) + 3d = 0. (14)

Subtracting (14) from (13):

3AB + b(A+B) + c = 0. (15)

To arrive at this relation we have simplified by (A−B), supposing that A 6= B.
Next we multiply (13) by B, (14) by A and subtract, to obtain

bAB + c(A+B) + 3d = 0, (16)

where again we have simplified by (A−B). Formulas (15) and (16) are linear
equations for A+B and AB. Solving them, we find

A+B =
9d− bc
b2 − 3c

and AB =
c2 − 3db

b2 − 3c
. (17)
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System (17) is easy to solve for A and B. In effect,

A =
1

2
(S +

√
S2 − 4T ) and B =

1

2
(S −

√
S2 − 4T ),

where S and T denote the right sides that appear in (17), that is

S ≡ 9d− bc
b2 − 3c

and T ≡ c2 − 3db

b2 − 3c)
.

Knowing A and B we can finally find z by dividing (12), remembering that
P = Q = 0:

z3 = −B
3 + bB2 + cB + d

A3 + bA2 + cA+ d
.

At last, the unknown x is given in terms of z by way of (11). Note that the
solution found is valid as long as b2 − 3c 6= 0. Nevertheless, in this last case the
cubic is simple to solve directly, by completing the cube in the right side of (4).
In effect, equation (4) can be written as

(x+
b

3
)3 =

b3

27
− d,

from which x is easily cleared.
This solution of the cubic, using transformation (8) (or better, transformation

(11)) may seem complicated at first, but it has the virtue that we can apply the
same method to solve the quartic and to understand why the fifth-degree equation
cannot be solved in general.

Lodovico Ferrari: Italian mathematician. Born in Bologna in 1522 and died in
1560 (or 1565, according to some authors). He was a student of Cardano. He was
the first to solve the general algebraic equation of the fourth degree. His solution
was published in Cardano’s Ars Magna. He was a professor of mathematics in
Bologna.

The quartic equation is of the form

x4 + bx3 + cx2 + dx+ e = 0. (18)

As in the case of the cubic, the quartic maintains its form upon making trans-
formation (8) (in reality only (11) interests us). Making transformation (11), the
new equation has the form

z4 + b̃z3 + c̃z2 + d̃z + ẽ = 0, (19)
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in which the coefficients b̃, c̃, etc., depend both on the coefficients b, c, d, e and
the parameters A and B from transformation (11). We have two parameters at
our disposal, so that, in principle, we can only cancel two of the four coefficients of
(19). Which ones cancel to resolve the quartic? The only possibility is to cancel b̃

and d̃, such that (19) becomes a quadratic for z2, which, of course, we know how

to solve. By stipulating that b̃ and d̃ cancel, we at last finds a cubic for A (or for
B), which by now we know how to solve. Here we will not go into any detail, but
it is a good exercise for the interested reader.

What happens with the fifth-degree equation? Well, repeating the process and
using the invariance under transformation (11), we find an equation of the form

z5 + b̃z4 + c̃z3 + d̃z2 + ẽz + f̃ = 0,

and, just as before, we have two parameters at our disposal to eliminate (at
most two, of course) coefficients. But, in contrast to what occurred with the
cubic and quartic equations, in the case of the quintic, even if we cancel any two
coefficients of the original five, we don’t obtain anything solvable. (One could be

tempted to make f̃ = 0, but this is equivalent to solving the original quartic.)
Therefore lamentably we cannot solve the quintic, at least not by these methods.
Niels Abel demonstrated, in 1828, that the general quintic cannot be solved in
terms of simple operations, as we have said above [1,2].

Niels Henrik Abel: Norwegian mathematician. Born in Findöe in 1802 and died
in Arendal in 1829. Abel made important contributions to the theory of elliptic
functions. We owe to him the demonstration that an algebraic solution to the
fifth-degree equation is impossible.

Evariste Galois: French mathematician. Born in Paris in October of 1811 and
died in May of 1832. Studied in L’École Normale de Paris. He had a very agitated
youth due to his political ideas. He died in a duel at the age of 20. He made
important contributions to Group Theory, and we owe to him much of the modern
theory of Algebraic Equations.

Algebraic equations have attracted the attention of numerous mathematicians.
The idea of the demonstration presented here has been introduced by several
authors. In particular, the contemporary mathematician Mark Kac (1914–1984)
wrote his first article, at the age of 16, precisely on a new method of solving the
cubic equation [10]. Mark Kac’s recent autobiography [8] tells an interesting story
about his motivation to consider algebraic equations. In particular, the prologue,
which reproduces a prior article [9], describes how his first article influenced his
future career as a mathematician.
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5. Ecrits et Mémoires Mathématiques, Evariste Galois, edited by R. Bourgne
and J. P. Azra, Gauthier-Villars, Paris, 1962.

6. Field Theory and its Classical Problems, Charles Robert Hadlock, The Carus
Mathematical Monographs, no. 19, published by The Mathematical Associ-
ation of America, 1978.

7. Higher Algebra, A Sequel to Elementary Algebra for Schools, H. S. Hall and
S. R. Knight, Mc. Millan & Co. Ltd., London, 1960 (first edition, 1887).

8. Enigmas of Chance, An Autobiography, Mark Kac, Harper & Row, Publish-
ers, New York, 1985, pp. 1–5.

9. How I Became a Mathematician, Mark Kac, Rehovot, 9, no. 2 (1981/82).
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Translation

Translated from Spanish by Mariah Laugesen, Urbana, Illinois, 2019.

Article obtained from https://revistadelprofesor.files.wordpress.com/2012/

05/revista-del-profesor-de-matematicas_ancc83o-1_nc2b0-1_pag-74-82.pdf

Translator’s notes

1. For “the previous century”, read “the nineteenth century”.

2. This originally said “see the figure on the next page”.

3. The suspension in question is the Cardan suspension, or the gimbal.

4. This paragraph was originally prefaced with N.R.; I’m not sure what that
stands for.
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