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ABSTRACT

Two corrections to the Thomas-Fermi theory of atoms
are studied. First the correction for exchange, that is the
effect of the Pauli principle in the interaction energy, is
considered. The defining variational problem is non-convex
and standard techniques to prove existence of a minimizing
solution do not apply. Existence and unigueness of solu-
tions are established by "convexifying" or "relaxing" the
energy functional. Properties of minimizing solutions are
studied. A second correction due to von Weizsacker is
also discussed. This is an inhomogeneous correction to
the kinetic energy density of‘the form cw(V/b')2 which was
introduced to obtain the correet behavior of the electron
density p far away and very close to thé nuclei. Existence
and uniqueness of solutions in the set {e] [ o < Al are
established. Only in thé atomic case existence of solu-
tions in the set {p| [p = A} is determined. There are
two major open problems left concerning this correction
namely, to establish existence of solutions in the set
{p[. fp = A} in the molecular caée and proving the existence
of molecules (binding) within the framework of this theory.
(A serious drawback of Thomas-Fermi is the non binding
theorem of Teller). Finally ﬁhe dual principle to the
Thomas-Fermi variational problem is studied (only in the
neutral case). A dual pripciple is suggested for the ionic
case. Also,va review of recent rigorous results concern-

ing Thomas-Fermi theory is presented.




CHAPTER 1. INTRODUCTION

Since the advent of Quantum Mechanics the impos-
sibility of solving exactly problems involving many particles
has been clear. These are of interest in such areas as

Atomic and Nuclear Physics.

It was, therefore, necessary from the beginning to
introduce approximative methods such as the Hartree-Fock
approximation and the Thomas-Fermi theory [16, 47] (hence-
forth denoted by TF).

Applications of TF to the study of matter under
extremal conditions, e.g. high pressures, high temperatures
or strong external fields, have achieved particular develop-
ment. TF is attractive because of its simplicity and
universality (the change from one element to another is

effected by a simple transformation of scale). However,

the applications of TF are quantitatively good only in the
limiting situations mentioned above. It is for this reason
that after the introduction of TF attempts have continually
been made to improve it {13, 49] in order to extend the
range of applicability of the model while preserving its
achievements. For a review of the physics literature
concerning TF and its corrections we refer to [22, 26, 36].
Although the TF theory was introduced a long time
ago, it has been only recently that rigorous results have
been established [31, 32, 24, 3, 4, 5, 6, 9, 11, 12]. It
is the purpose of this thesis to review some of these rigorous

results and to derive new ones concerning two of the correc-
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'tions to TF mentioned before.

The TF theory is defined by the energy functional

2/3

(in units in which h2(8m)"l (3/m) = 1 and |e| = 1, where

e and m are the electron charge and mass) :

E(p) = (3/5)[0(x)5/3dx-fv(x)p(x)dx +
(1.1)
+ (1/2)fax dy o(x) |x-y|™lo(y)
k -1
V(x) = £ zi]x-Ril , (1.2)

i=1

where the Zl’ Zos eees zk > 0 are the charges of k fixed
nuclei located at Ri, Rys voey Rk' fdx is always a three
dimensional integral. This functional is defined for

single particle densities p(x) > 0 (such that [p and fp5/3

are finite). The TF energy for X (not necessarily integral)

electrons is defined by
E(A) = inf {&(p)]| [p= A}. (1.3)

The first térm in (1.1) is supposed to approximate
the kinetic energy of the electrons. This particular form
is suggested by the calculation of the kinetic energy per
unit volume fér a system of N fermions in a cubic box of
volume V, which for large N is proportional to (N/V)5/3.
This approximation, with an appropriate multiplicative constant,

is in fact a lower bound for the kinetic energy [28, 347.
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The second term of £(p), which represents the
nucleon-electron attraction, is exact. The third term
describes the electronic repulsion and it is only an
approximation: it takes into account only the "dirgct"
part of the true Coulomb repulsion (see Chapter 3 below).

It is known [32] that for A < z = .E z; there
is a unique minimizing p for £(p). It is thelaiique solution
to the TF equation

2/3

p (x) = max [¢(x) - $5r 01 , (1.4)

for some ¢o5 2 0 and with

6(x) = V(x) - fdy oly) |x-y|™t . (1.5)
-9 is the chemical potential [32], i.e.

dE

—— A. — haad .

Foy (A) $6

For A <z, $ >0 all x. ¢, = 0 if and only if A = z and

hence for the neutral case the TF equation is
p2/3 = ¢ . (1.6)

If X > 2z there is no minimizing p for (1.3) and E()A) = E(z)

in this case. The energy of an isolated atom is E(z) = -Kz7/3
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here K = 3 678 by numerical computation. It is convenient
whe = 3.

to introduce the total energy

e (Z, B) = e(zllonnzk; Rl,-o-Rk) = E(z) -+ U’

i j’— is the nucleon-nucleon

repulsion. It i85 2 known, and rather negative, result that

molecules in TF d© not bind [46, 32]. 1In fact if one

separates the nu01ei into clusters and then takes them to

infinity the enerdyY e(z,R) decreases. Moreover, there are

no local minima of the energy in terms of the nuclei con-

figuration R 1f one dilates uniformly R — 2R (& > 0),

the energy always decreases [5]. For a review of additional

rigorous results S€€ Section 2.8 below.

The main concern throughout this thesis are the

variational problems associated with TF and its corrections.

In Chapter 2 a generalization of the functional (1.1) is

considered. The kinetic energy density is replaced by a

more general locals convex function of the electron density o

(equation (2.3) pelow) . Most of the results about TF hold

for this new functional' In particular the existence of a

unique minimizing solution for X < z is established and, as
before, no solution foTr A > z exists. Moreover, the no-
14

binding theorem als© holds. This no-binding theorem is

in fact a consequence of the local dependence of the

kinetic energy density on p. We introduce this general
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model and discuss its properties because we need them in

the discussion of the TF with the correction for exchange.

This correction consists in adding a term - (3/4) Cefp4/3

(c_ is a positive constant) to the TF functional (1.1),
e
which is meant to be an approximation for the exchange or

"indirect" part of the true electronic repulsion (see

Chapter 3). 1In fact all the properties of this theory

would follow directly from the results of Chapter 2 if it

were not that the jntroduction of exchange destroys the

convexity of the functional. Following known techniques

[15], we consider a conveX functional instead by replacing

g(p) = % 0>/3 - % cep4/3 by a function §(p) whose epigraph

(i.e. the set of points above the graph of §) is the convex hull

of the epigraph of g(p). The function § and thus the

functional associated with it are convex in p. Therefore,

this new functional (usually called the relaxed functional)

is a particular example of the one studied in Chapter 2 and

thus, existence and unigueness of solutions for this relaxed

problem are established at once. We then prove that the

minimizing solution 5 for the relaxed problem has the property

that the set of points where g(p(x)) differs from §(p(x)) has
(Lebesgue) measure zero. This implies that § is also a

solution to the original non-convex problem. Finally, some

properties of the minimizing solution are proven.
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In Chapter 4 another correction is considered.
This is a correction to the kinetic energy density of the
form cw(V/E)z, introduced by von Weizsicker [49] in order

to obtain the correct behavior of the electron density far

away and very close to the nuclei. (In the TF theory the
electron density falls off as [x]—s, rather than exponentially,
for large distances [44]. Close to the nuclei behaves as

lx - Ri[_3/2, which diverges. The fact that the TF density
describes very badly the outer shell of the atoms is re-
flected in the absence of molecules in this theory). The
resulting functional is not anymore of the form considered

in Chapter 2. It is, however, convex and standard techniques
can be applied to prove existence and unigqueness of a minimiz-
ing p at least on the set {p| [p < A}. The question of
existence of solutions on the set {pl fp = A} is harder and
it is left as an open problem. In the atomic case (V(x) =
zlx!_l), however, we show that there is a unique minimizing
solution on {p| fp = A} for A < z. It also remains as an
open problem to determine the largest A for which this is
still true. In the TF von-Weizsdcker theory the kinetic
energy density is no longer local in p and the no-binding
theorem does not apply. It is an important open problem to
determine if binding is possible in this theory. There are
numerical indications [21] and heuristic arguments [2], that
this is indeed so. We do not, unfortunately, present any

result concerning binding. The rest of Chapter 4 is spent
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in discussing regularity and other properties of the minimiz-
ing solution.

In Chapter 5 the dual to the TF variational problem
is discussed (only the neutral case is considered). This new
variational problem, knéwn as Firsov's principle [18], is the
dual to TF in the sense that it is a maximization problem rather
than a minimization one and that both have the same value,

i.e. m;x gFIRSOV (f) = min ETF (p). Here f is the electron

potential f£(x) = [dy p(y? Ix—y]—l. Having this dual principle
is very useful in estimating lower bounds to TF energies. It
has been particularly used in studying the behavior of the
two-body atomic potential [19, 48] for short and long dis-
tances. The existence of a unique maximizing solution f for
EFIRSOV(‘) is determined by proving that v-f satisfies the TF
equation (1.6) for the neutral case and appealing to the results
of [32]. 1In the Appendix to Chapter 5 the dual principle for
the ionic case is suggested.

To conclude this introduction we note that throughout
this thesis the emphasis is on the variational problems defined
by TF and its corrections. We have left perhaps the most im-
portant question aside namely, to establish the connection
between TF, with these corrections included, and the original
quantum mechanical system. It is known [32] that the TF theory
gives binding energies (~ 27/2) which are asymptotically exact
in the large z limit. Is the TF, with the two corrections

discussed here included, correct up to order 25/3? (This is

intimately related to the open problem 2 in [32]).
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CHAPTER 2: STUDY OF A VARIATIONAL PRINCIPLE RELATED TO

THE TF THEORY

In this chapter we study a variational principle

which contains as a particular case the TF theory and which

will show to be useful in the discussion of the TF theory with

exchange correction (see Chapter 3). The purpose here is
twofold. First we want to present a review of the rigorous
results related to the TF theory that have appeared in the
last few years [3, 4, 5, 6, 9, 11, 12] after the work of
Lieb and Simon [31], which set TF in a firm mathematical
basis. Second, we want to establish the results needed for
the discussion of the TF theory with exchange. Many of the
results of this chapter have been already obtained in [6],
although the point of view there is the partial differential
equation rather than the variational problem. We are more
interested in the properties of the energy functional.

The main results of this chapter are the existence theorem
2.13 and the no-binding theorem 2.14. In the last section
we specialize to the TF theory and review some of its

properties.

2.1. Variational Principle

Consider the functional:

£ (o, V) = [ £(p) dx - [ vp ax + % f dx ady

+ o(x) [x-y] 7L o(y1

(2.1}
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(dx denote the Lebesgue measure in R3), defined for p ¢ W
with

1

W= {p]o >0, p e L” and [ £(p) < =} .

Here V ¢ L5/2 + L7, We will be interested mainly in

I—l

T

V(x) = 2y zilx-Ri rz, > 0. (2.2)
The function £: R+ - Rt isg assumed to be of
the form
s
fls) = [ a(t) dt, (2.3)
o

with a(t) satisfying the following properties:

(A-1) a(t) is continuous, a(0) = 0 and a(t) is non-decreas-

ing for t > 0. In particular a(t) is non-negative.

(A-2) There are positive constants c, and ¢ such that for

t > 1

2/3 2/3

£7 > a(e) > c_t?/3 | (2.4)

Sy

Note that (A-1) and (A-2) imply the following

properties on f:

(F-1) £ecl (rD).
(F-2) £ is convex, non-decreasing and non-negative.
(F=-3) £(s) > d ss/3 for s > 1 and some positive constant 4.
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(F-4) lim £(x)/x = a(0) = 0.

x40
Remarks: i) The exponent 2/3 in (2.4) can be replaced by
any p e(%, 1l). In [6] more general p's are handled, namely
p > % . However, for p < % min £(p)} ==« and since the
object of our interest is the energy min £ (p), we do not
consider those cases.

ii) a function £ defined by (2.4) with a(t)
satisfying (A-1) and such that a > 0 for t > 0 is usually
called an "N-function" [l]. If moreover a(t) satisfies (A-2)
f is said to be "equivalent near infinity" to the N-function
t5/3. Associated with N-functions, there are Banach spaces
called Orlicz-spaces. These spaces are the generalization

of the P spaces, which can be considered the Orlicz-spaces

associated with the N-functions tP, p > 1. For a review see

[1] or ([15], Chapter VIII, Section 2.4).

Note that if f satisfies the above properties then

5/3 . . .
We L / . In fact if p € W, (F-3) implies

/ p5/3 dg = f p5/3 dx + f p5/3 dx < [ p dx

p<1l p>1
-1 (2.5)
+da " [ f(p) < =
and therefore p ¢ L5/3.
Let us define
W o={peW]| {p<2} (2.6a) —

A
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The variational problem that we study here is
min {€(p, V) | p € Way b,

where A > 0 is a fixed number. Even though this seems to be
a simple convex minimization problem, it need not have a
solution. (Lieb-Simon [32]). The difficulty lies in the
fact that, as we shall see, if Pn is a minimizing sequence
for (2.7), then p, converges weakly to 0 in Ls/3 and

lim g(pn,v) > £(p,V), but we can only assert that fadx < A
In fact if WBA is replaced by W, the problem becomes much

simpler [32].

2.2, Minimization of £(p,V) on WA'

The proof of the existence of a solution to the

variational problem
min {& (0,V) | p e W}
will be based on the following well known theorem.

Theorem 2.1: Suppose I(u) is a bounded functional defined
on a (sequentially) weakly closed and non-empty subset M of
a reflexive Banach space X. Then, if I(u) is coercive on M

(in the sense that I(u) + = whenever Ilullx > ®» with ueM),

(2.6Db)

(2.7)

(2.8)
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and in addition I(u) is weakly lower semicontinuous on M
then ¢ = inf I(u) over M is finite and attained at a point

uO € M.

Proof: This theorem is standard ( [7], Theorem 6.1.1; [15],
Proposition 1.2, Chapter 2) and its proof is a consequence of

the Banach-Alaoglu Theorem ([38], Theorem 4.21). ||

In the case we are considering the Banach space is
X = Ls/3 (R3, dx) which is certainly reflexive. In the next
two lemmas we prove that £(p, V) and WA satisfy the hypothesis

of Theorem 2.1.

5/3

Lemma 2.2: (i) E&(p, V) is bounded on Wy e L and

(i1) &(p, V) is coercive on W, .

Proof: Since p ¢ ch L5/3, (i) follows from ([32], Theorem

I1.2). To prove (ii), note that [ dx dy p(x) [x-yl_l o(y) >0

because lxl'l is a positive definite kernel. Hence

5/3

5/3 " Ad - fvp,

glo, V) 2 fE£(p) = [ vo > a ||p]]

where the last inequality follows from (2.5). Moreover, the

5/2

decomposition V = V., + Vy with Vv, ¢ L » V, € L” and H&lder's

1 1

inequality imply

- f Vp 2 - kl llpll5/3 - kz(}\) v
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where k., k, are constants. Hence

(o, V) 2 4 Ilpllgfg - Ad =k ellsy -k,

and thus llp||5/3 + ® implies £(p, V) > « .||

Since £{p, V) is bounded on W and £(p,V) » « as

[ f£(p)dx » », we can restrict our minimization sets W, W,

to be

1

W' = {plp > 0,p L [ £lp) < M}

il

W= {plp e W , f o <2}

for some finite constant M.
Lemma 2.3: The set Wi is weakly closed.

Proof: Note first that Wi is convex because f{-) is convex.

Moreover Wi is strongly closed. In fact, let {pn} be a

sequence in Wi with pn + p strongly in L5/3. This implies

that there exists a subsequence pn.(x) which converges point-
i

wise a.e. to p(x). Since f is cohtinuous, f(pn_(x)) -~ £ (p(x))
i

for a.e. x. By Fatou's Lemma f £ (o) < M and also f p < A

Therefore Wi is strongly closed. Wi being strongly closed

and convex is weakly closed. ||
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To conclude the proof of existence of a solution

to the variational problem (2.8) we need only show
Lemma 2.4: &£(p, V) is weakly lower semicontinuous in WA'

Proof: (i) [ £(p)dx is weakly lower semicontinuous because

{o|f £(p) < M} is weakly closed. (ii) That [ ovdx is con-

tinuous in the weak L5/3 topology is proved in ([32], Theorem

\II.13). The idea of the proof is the following: denote by

Ty (p) = [ dx |x]7t 8 (R-|x|)p(x), (here & denotes the step
5/3

function), The operator TR : L + R is a bounded linear

functiocnal so TR(-) is continuous in the weak L5/3 topology.

Moreover, Tp(-) ~ T(-) = f lx["l (.)dx uniformly in WA (because

I(T - T (p)!| £ AR-l, for all p ¢ W,), hence T is continuous.
R A

(iii) f p(x) |x-y|~1 o(y) dx dy is weakly lower semi-

continuous because positive quadratic forms are always

% decreasing under weak limits [43, 32]. | |

Lemma 2.5: If Ilpn—p[§5/3 + ]]pn—plll + 0 as n > », then

E(on, V)> E(p, V).

Proof: Because of ([32], Theorém II.2) we need only check
that [ £(p,) -~ [ £(p). Since f is convex (F-2) we have
[£6e) = £(oy) | < almax (p,p,) (x)) |p-p_|.

(because a(+) is non-negative). Thus

fax |£(p) - £ )] 2 [ als,(x)) lp=p, |ax,
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s_(x) = max (p,0.) (x). Then

fax [£(p) ~ £(p )| < fs als,) |e=ppl

<1
+ fsnzl als ) le-eql < a@) [le-eyll;
2/3
+ —-—
c+ fsnz Sn Ip pnl

cause of (A-1) and (A-2)). Hence, using HSlder's inequality
(be

fax |£(e) = £(o) | < a@) [le-p Il

2/5
+cp (f sn5/3) / llp-pn!|5/3 >0
snzl

(since (f 5.7/ < .33 > [65/3 finite). |7

5
n s

as >
n=

Let us now define

E(A,V) = inf {€(p,V)| o € Wy} (2.9)

2.6: ([32], Proposition 2.4). If V ¢ LS/2 + LP for

come 5/2<p<®, then, E(XA,V) = inf {£(p,V)]| o ¢ WA}'

0

3 . -1
. Given [ ¢C (R) n W, pick p. =p + n 9( whe
proof o ' n Ay Where

3( ig the characteristic function of A and A is a set
n

disjoint from supp(p) with measure n(A—[[plll). Note that

e —pll5/3 + llpn—pllr > 0 (for every 1l<r<5/3] and therefore
n
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, -1 ) . 3
gslder's jnequality and the decomposition ver3/2 + P,

Moreover ff(p) = ff(pn) +n f(l/n) ()\-le!l)l [={e] (F-4) lmplles
fe(p,) » JE(®) a5 m Thus £(p_,V) > £(p,V) and

ing {E(p,V) |peWgy} < inf {E(p,V) [peWyNC]}

= inf {£€(p,V) |pewW,}.

quality follows from Lemma 2.5 and the density of

w 5/3
C, in fn™ T

The last €

corollar 2.7: E(A,V) is a monotone non-increasing function

of A wheneverl VsLs/2 + P, some 5/2<p<e®,

go far we have proven the existence of solutions

to the variational problem (2.8) We now show that the

solution is in fact unique.

Theorem 2.8° £(p,V) is strictly convex in peW and therefore
Theorem £-2

there is @ unique solution to problem (2.8).

ff(p) is convex because f{p) is a convex function

Proof:
[vo + L fax dy po(x) lx-yl-l ply) i i
of p. - 5 y) 1is strictly convex
, , -1 .
because - jvp is linear and k| is a strictly positive

definite kernel. ||

» Corollary 2.9 ([32]1 Cor. II.9) Suppose VEL5/2 + Lp with
AV

p>5/2. Then,
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(a) If p_ minimi ‘
o zes £(p,V) on WA and fpodx < AO,

then E(A,V) = E(AO,V) for all A>A_, when p<=,

(b) If &(p,V) has ini
0, as a minimum on WBA for all

then E(A,V) is strictly convex on [0,) ]
O L2

Af)\ol
In particular E(X,V) is convex in A
proof: (b) follows from the strict convexity and (a)

follows by noting that p must be a minimum for £(p,V)
3 7 4

on all w. |_|

connection with the EUIeriequation

2.3

Theorem 2.10:

(a) If p obeys the (Euler) equations:

alp) = ¢ - qu >0 1if p>0Q
0 =alp) 20 - 9, if p=0
where o (x) = V(x) = fdy o (y) lx_yl_l
and fpdx = N

for some ¢, then

at A=N, and

IE(A,V)

q)O‘ = - PN .
A=

E(p,V] = E(N,V); E(A,V) is differentiable

(2.10a)

(2.10b)

(2.10¢)

(2.104)

(2.11)
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In particular if ¢o = 0, then p minimizes £(-) on all of Ww.
{(b) If peWaN and £(p,V) = E(N,V), then p obeys

the Euler equation (2.10) and ¢O is given by (2.11).

Proof: Goes in the same way as the proof of ([32], Theorem
II.10). The only fact it must be checked (to prove part 6)

is that

%% = al(p) - ¢ ¢ 1,°/2 + 17,
Note that ¢ e L°/2 + L”, because V ¢ L°/2 + 1° and p*[x[—la L™,
Hence, we need only check that a(p) ¢ L5/2 + L”, Decompose

a(p) as follows: af{p) = al(p) % os1 ¥ a(p) %p<l where %pzl
is the characteristic function of the set {x|p(x) > 1},

Now Ha(p)%p<lllw = a(l) < =, therefore a(p)%p<l e 1.V,

also, a(p))épzl < c+pz/3 because of (A-2). Since peWcL5/3

2/3 5/2

e L

we have p and therefore a(p)?ép>l € L5/2. ’:l

Remark: This result is also proved in ([9], Proposition 3).

2.4. Minimization with [p=2x

Let us consider here V of the form

i]"l ,z;50. (2.12)

k
Vix) = ] z; | x-R
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In this section we deal with two results. First
we prove that for A < z = .E Z.: the minimum of £(+,V) on
WA is attained for some p 2~$8A' Next we show that for
A > z, the unique minimizing p for £(-,V) on WA has fp=z and
therefore there is no solution to the variational problem

(2.7) for A>z:

Theorem 2.11l: Let V be of the form (2.12). Then for A<z

the minimizing p for £(.,V) on W, has fo=\.

Proof: We mimick here the proof of ([32], Theorem II.18).

In more generality this theorem is proved in ([9], Theorem 4).
Suppose that the minimizing p has fpdx = AO<A.

Then by Corollary 2.9, p minimizes £(-,V) on all of W so,

by Theorem 2.10, the corresponding ¢o is 0. Thus p obeys

. a(p) = max (4,0), where ¢ is given by (2.10c), and also
: fo = Ko < z. Let R>max |R.|. For r>R define
j=1,2,...k J
-1
[¢] (xr) = (4m) fs o (rQ) dQ.
2

|
Eg. (2.10c) and fp=AO imply, ’
)}

|
,\'

[¢1 (x) > (z=2))/r. (2.13) f
|

Now let [p] (r) = (4m) ™! [ p(xQ) dQ. Let decompose

ks
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[0] () = (4m) ™+ fp>1 p(ra)dn + (am ™t fpsl o(r) ag >
> um T etrman » o732 (am Tt [ a(e) 3/ 2aq,

where the last inequality follows from (2.4). Using the

Euler equation for p and HSlder's inequality we have

(47r)-l c;3/2 f maX(¢,0)3/2dQ

[p] (n) > 2
3/2
> c;3/2 [[ max(¢(rQ),0) %%]
i C;3/2 (161 ()2 5 T2 (o y3/2,7302,

because of (2.13). Thus

fo(x)dx 4t [ [p](r) r2dr = ®

which contradicts [p = Ao < z. We conclude [p dx = A. [:I

The second result follows after a remarkable

theorem of Baxter ([3], eg. (3.2)):

Theorem 2.12: Let V be of the form (2.12). Then for

k
\>z = ] 'z, the minimizing o for £(.,V) on W, has [pdx = z.
i=1

Proof: Because of (F-2) (i.e. f non-decreasing) the hypothesis

of ([3], equation (3.2)) are satisfied and hence E(X) is non-
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decreasing on (Z,x). Then the theorem follows from Corol-

lary 2.7 and the uniqueness of the minimizing p on W, . ||

Remarkﬁ This theorem can also be proven by mimicking the
proof of [32, Theorem II.18]. That is, suppose that"
[pdx = A>z. As above define [¢](r). One can easily see
that fpdx = A\>z implies [¢](r)<0 for very large r. This
contradicts Lemma 2.18 below.

We can summarize the results of this first 3

sections in the following:

k
Theorem 2.13: Let V(x) = ] z.]x—R.]-1 with z,>0 and
K i=1 *
let z = ) z,. If A<z, there is a unique p with [pdx=2
i=1
such that

£'(p) = a(p) = max (6-9_0),
with

¢(x) = V(x) - [dy ol(y) lx-yl-l,

for some ¢O. Moreover:

(i) If A=z, ¢O=O and if A<z, ¢O>O.
(ii) ¢O is given by (2.11)
(iii) E(X,V) is strictly monotone decreasing on

[0,2z], constant on [z,») and convex on [0,«).
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2.5. No-=binding Theorem

Let us denote by E(XA,2z,R) the minimum off (+,V)
on W,,. Here z denotes the k-tuple (zl,...,zk) W1t§ z, > 0.
Also R = (Rl,...,Rk), Ri £ R3.

Let us define

i.e. e is the total energy, including the internucleon
repulsion.

In the TF model there are no molecules. In fact
if one separates the nuclei into élusters and then takes
them to infinity the energy e decreases. This result was
first discovered numerically by Sheldon [42] (who is
investigating binding in the TF theory with exchange, see
Chapter 3) and then proven by Teller [46]. A rigorous proof,
based on Teller's proof, was given by Lieb and Simon [32].
This result extends to a general model like the one de-
cribed by (2.1). A very elegant proof of this fact is
given in Baxter ([3], Proposition 2). His proof uses the

variational principle rather than the Fuler equation used

in Teller's proof.
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Theorem 2.14: The no-binding theorem of Teller

For any strictly positive {zi}§=l’ any A>0,

k . .
any {Ri}i=l and J—.:L’...’k-l‘

e(A;zl,...,zk; Rl,...,Rk)) O?i?s).{e(A';zl'...'zj;

(2,15)

Rl""'Rj) + e(l-k'7zj+l,...,zk;Rj+l,...,Rk)}

Remark: For the TF case (f(p) = p5/3) see ({32], Theorem V.2).

Proof: Since £(0) = £'(0) = 0 and £(-) is convex, f is
superadditive i.e. f(pl+p2) > f(pl) + f(pz). Hence this
theorem follows from ([3], Proposition 2). ||

Since in the true guantum mechanical system
molecules do exist, this result of the TF theory is a
negative one. However this no-binding result plays an
important role in the Lieb~Thirring proof [34,28] of the
stability of matter. After first showing that the TF energy
with modified conétant is a lower bound to the true
Schrdedinger energy one uses the no-binding theorem to
show that this lower bound is greater than a constant times
the number of atoms in the system.

The no-binding result is a consequence of the
local dependence of the kinetic energy density on p. If
one includes derivatives of p in the kinetic energy density

binding may be possible. (see Chapter 4 below).
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2.6. Components of the energy, virial theorem, scaling
relations and definition of the pressure,

The results of this section are only heuristic.

No rigorous proof will be given here. (However for .the

TF model f(p) = p5/3 all these results are rigorously

proven in [32]).
We consider V of the form (2.12). ILet us define

the components of §(p,V):
KA, 2,R) = [£(B)dx. A(A,z,R) = [(x)V(x)dx.

R(L,z,R) = 3 [5(0) |x-y| B (y)ax ay. v(r,z,8) =

(2.16)
) z.z.[R.—R.]-l
l<i<j<k * 31 3

Here § denotes the minimizing p for &£(.,V) on WA' It is also

convenient to define

D(A,z,R) = [£'(p)p dx. ' (2.17)

"Theorem 2.15": Virial Theorem (one center). (see [32],
Theorem II.22).

If v(x) = zlxl-l and if p minimizes £(-,V) on any

W then

)\’

+ 3(K-D) = (R-A). (2.18)
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Sketch of a proof: set pp(r) = u3p(ur) so that puewl.

-3 3 :
Then K(p ) = u [E(u p)ax , Alp,) = uA(p) and R(p,) = uR(p).
By the minimization property for p, K(pu) - BWA + uR has a

minimum at u=1l.

"Theorem 2.16": Let p minimize £(«,V) on all of W. Then

for V given by (2.12)

D= A - 2R (2.19)
Sketch of a proof: Let pg(x) = Bp(x). By the minimization
property of p K(DB) - BA + BzR has its minimum at B=1.
Remark: see also ([32], Theorem II.23).

For one atom theorems 2.15 and 2.16 imply

e = 4K - 3D
| A = 5D - 6K (2.20)
R = 2D - 3K.

5/3

In particular, for the TF theory (f(p) = p ) D = /3 and

we have the result

K:A :R=23:7 1

(see [32], Corollary II.24).
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We now consider the scaling properties of this
TF related models and we get an expression for the pressure.
For simplicity we consider here only the neutral case.

Let a>0 be a fixed parameter. Consider
£(0) = a3 £(ap).
(This particular dependence on "a" is chosen so that "a"

disappears in the TF case. Of course the results are in-

dependent of this particular choice.)

Define
e(a,z,R) = inf {£_(o,V) [pewW}
with
E.(e,v) = [£ (o) = [Vo + % [olp%]x|™h) + v,

Then the minimizing p for Ea(°,V) satisfies the following

scaling relation:

pla,Z,2R,x) = 2-60 (Q—Ga, 235, R, x/1) (2.21)

and each of the components of the energy satisfies

e(a,z,tR) = 27" e(x™%, 2%, B (2.22)

Let us now consider a dilation of the neutral

molecule by £, i.e. Ri+2Ri, all i 2€R+. We define the pressure —
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P = - ~17 é% (2.23)
32 =1
where e(%) = e(a,z,4R) (see [5]). Combining the scaling

properties with the definition (2.23) we get

_ de dge
P = [7Te + 6a 53~ 3 Zzi 35; (2.24a)

Wi

Because of the minimization property of § we have

X de
) Z, o= = - A+ 20 (2.24Db)
i=1 i

%g = - % K + D (2.24¢)

(these results are only heuristic. One should prove the

differentiability of e in z; and a first. See however ([33],
Theorem II.16) for the TF case).
From (2.24a,b,c,) we get

p = % [e + (3D - 4K)] . (2.25)

(i) Note that for an atom P=0 as it should be!

Remarks:

L. . 5/3

(ii) In the particular case f(p) = p one has
D = 3 K and, there, P = (e+K)/3.

(0%

(iii) Theorem (2.14) says that the absolute minimum
of e as a function of R is attained when all R, are infinitely

If one can prove that P>0 one concludes that there

apart.
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is no local minimum. (Because if R is a given configura-

tion, ZR for 2>1 has always less energy). In the particular

case f = p5/3 (TF case) this was proven to be true in [5].

2.7 Regularity Properties of the minimizing solution.

Let us consider V of the form (2.2). We
establish here some regularity properties of the minimiz-

ing p for £(-,V) and of its respective potential ¢.

Lemma 2.17: The potential ¢ defined by (2.10c) is con-

tinuous away from the Ri's and goes to zero at infinity.

Proof: The convolution p*lx,_l is continuous and goes to

5/3 1 5/2 4

zero at infinity because psLln L and |x| "eL + L

[41], ([32], Lemma II.25). | |

. Lemma 2.18: ¢(x) is non-negative, all x.

Proof: Let S = {x|¢(x)<0}. Since ¢»>= as x>R; and ¢ is con-
tinuous away from the Ri's then S is open and disjoint from
the Ri' On S, ¢<0 so ¢—¢o<0. Thus (2.10b) implies p=0 on

S, hence ¢ is harmonic on S. Because of the previous lemma

¢=0 on 3Sg{=}. Therefore ¢=0 on S and S is empty (see[32],

Lemma II.19). ||

94 324 2
3x., ' 3%, 9dx,
i i775

Lemma 2.19: ¢ € H2 (the Sobolev space s.t. ¢,

away from Ri'
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Proof: Taking the distributional Lapacian in (2.10c) we get

1

- (4m) " Ap = = p + Z. 6(X—Ri) f2.26)

l 1

i e~1%°

with p = a1 (max(¢-¢o,0)). Since a~t is monotone in ¢,
(2.26) is a non-linear elliptic equation (for ¢) with a
monotone non-linearity. Therefore ¢ ¢ H2 away from the Ri

by standard regularity theorems for elliptic equations [10]. |7

Lemma 2.20: ¢ and p are analytic on the set {xla(p)>0},

away from the Ri'

Proof: ¢ obeys the non-linear elliptic equation (4ﬂ)—lA¢ =
-1 . . .

a (¢-¢o) in the neighborhood of any X # R, with ¢(xo)>¢o
(or equivalently X, € {x|a(p)>0}). General theorems ([37],

Section 5.8) then assert the real analyticity of ¢ and so

also of p = (4ﬂ)—l Ad. l:l

.In the particular case f(p) = 05/3 (i.e. TF theory)

additional regularity properties, including asymptotic be-

havior of ¢ and p are proven in [32, Section IV].

2.8. Review of recent developments in the TF theory:

£(p) = p°/3,

After the first rigorous work on the (full)l TF
theory by Lieb and Simon [31,32] many new properties have

been studied on rigorous grounds. We will review here

lThere had been previous rigorous results by E. Hille
[24] about the TF equation with spherical symmetry, i.e. V-2 |x|~1.
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some of the results. (Throughout this section f(p)=p5/3

and V is of the form (2.2)).

(1) Sign of the many-body potentials [4]: The k-body

energy s(zl,...,zk; Rl,...,Rk) is defined by successive
differences of the total energy e. If a = {al,...,ag}
(2 < k) is a subset of the integers K = {1,...,k}, let e(a)

R_ ), and |a|] = & be the

deHOte e(zal’o-.,zaz; Ral,..., aQI

cardinality of a. Then

e (x) = 7 (-1 Kl-lalgqy (2.27)
p<€ackK
with e(¢) = 0. Thus,
e ({1,2}) = elz),z,7 R ,R,)) - o2t (z)) - 2t ()

is the two body energy,

€ ({11213}) = e({l,2,3}) - 8({1,2}) e e({ll3})
- e({2,31) + & ({11 + %% (121 + & (131
is the three-body energy, and so forth.
It was shown in [4] that the sign of (k) is
(—l)IK,for all z and R. This was done by noting that

e{K) = 0 when z, = 0 and that

BE(K)/le = lim ¢ (K;x)
X+R

1
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where

(here ¢ is the TF potential corresponding to the con-
figuration a). It was shown that (—l),a[ ¢ (a;x) > 0 all x.

This last result is the finite difference version
of the following heuristic result:

3¢

If ¢, denotes P (x), etc.
i

(-1)" ¢ (x) < 0 all x, n>1. (2.28)

il’iz""’in
(see [5] Section 3).

A function satisfying this property is called an
alternating function. This kind of result is characteristic
of problems related to electrostatics. In fact capacities !
and Green's function satisfy similar inequalities [35]. |

This theorem about the sign of the many-body

potentials and the inequalities for the TF potential still

hold if f£(p) = 95/3 is changed by any function satisfying

(n)

£,£' >0, (-1 £ > 0, (as long as the minimizing problem I

still makes sense), i.e. if f' is a Herglotz function.

(ii) Positivity of the pressure (non existence of local

o . . .
minima of the TF energy as a function of the configuration ﬁ
R) [5]1. (neutral case only)

The no-binding theorem of Teller says that the

absolute minimum of the TF energy as a function of the
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configuration R is obtained when all R's are infinitely
apart from each other. However there could be a configura-
tion of R's giving a local minimum for the energy.

Let e(R) be the TF energy corresponding to the

configuration R. Let us make the uniform dilation R > 4R

(2>0) and consider e(2) = e(4R). Let us define the pressure
_ 1 Jde c . . .
P = - g7 == . Then, it is clear that if p is non-
322 34 0=1 »

negative there are not any local minima for the energy.
This result has been proven in [5]. It was also proven

that the compressibility L= - % %% is also non-

negative and that, in fact, e(l) is a di;ieasing convex
function of & (convexity here is stronger than the state-
ment that kT is positive.

The positivity of the pressure and compressibil-
ity had been conjectured in [32]. The pressure can be
written in terms of the total energy e and the kinetic
energy K as P = % (e+K). The no-binding theorem 2.14 says

that e is superadditive, i.e. if we decompose a system into

two clusters the energy of the system is larger than the

sum of the energies of the clusters (e(zl+22) > e(zl) + e(zz)).

Suppose that K has the same property. Then P would also
have it and, therefore, P > J 2% = 0, where P®% is the
pressure of a single atom and is zero because eat does not

change under dilation. That K is superadditive follows

from the relation
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2 X )
3%k _ 324
5707, =~ 3 Lz gpaa (Ry)
i" 73] =1 i3

(this kind of relation only holds when f(p) is a power of p)
and equation (2.28). |

It has been conjectured [5] that the neutral
case is the worst case and therefore the pressure P and
compressibility K-l should be positive for the ionic case

(A<z) as well.

The only result in the ionic case is the one by
Balazs [2]: (an alternative proof using Reflection Positivity
is given in [5]) for a configuration (z,R) having a plane
of symmetry, the shifting of the charges z in each side
away from the symmetry plane decreases the energy.

(iii) Asymptotic behavior of the k-body energies [11]:

It was proven by Brezis and Lieb [11] that the interaction
among neutral atoms in TF theory behaves, for large separa-
tion 2, like F£—7 (I' is independent of the z's, a consequence
of the fact that the asymptotic formula for p [32,44] is
independent of the z's) but does depend on the relative
position of the nuclei. Moreover in TF theory 3 and higher
body terms persist into the asymptotic region.

(iv) The Free-Boundary of the TF functional [12]: In the

ionic case (i.e. A<z) the support of p is compact ([32],
Theorem IV.2). Let @ = {x|p(x)>0}. The boundary 30 is

determined by the TF eqgn. (i.e. 3Q is a free boundary). The
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/ properties of 3R have been studied by Cafarelli and Fried-

5

man [12]. They proved that 30 is C3+ everywhere except on

at most a finite number of Cl curves.
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CHAPTER 3: "THE EXCHANGE CORRECTION"

In the TF functional only the "direct" part
of the true gquantum mechanical electron-electron repulsion
is taken into account. The so called "exchange" energy
(the effects of the Pauli principle in the interaction
energy) is not considered. Although it is impossible to
express this energy only in terms of p we seek an approxi-
mation to it. A possible approximation is suggested by
the calculation of the exchange energy per unit volume
for a system of N electrons in a box of volume V. The

result of such computation [8,17] is

-3 mmi3, (3.1)

e

with Co = e2(3/7r)l/3 (-e is the charge of the electron and
we choose units in which e = 1). Starting from the Hartree-
Fock theory, Dirac [13] derived an approximation to the ex-

change energy in terms of p. He found

4/3

U (p) = - (3c_/4) [ ax p™/7, (3.2)

Finally, it has been recently proven [30] that Ue(p), with
some appropriate constant replacing Ce’ is in fact a lower
bound to the true exchange energy (defined as the difference
between the quantum mechanical electron-electron repulsion

and the direct energy % fdx dy D(x)lx-yl—lp(y)).

it
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The TF theory with the correction for exchange
taken into account (henceforth denoted by TFD) is then

defined by the functional

Eppp (P) = Epp (0) + Ue(p)
(3.3)

= fg(p)dx - [vp ax + % fax dy o (x) |x-y]| o (v),

with

5/3 4/3

3(p) = (3/5)0 (3/4) co*/3. (3.4) &

The addition of the exchange term to the TF energy
functional makes it loose its convexity in p and therefore i
we can not apply the usual methods to prove existence and
uniqueness of a minimum. In particular TFD does not fall i
into the category of models studied in the previous chapter. J

In the last fifteen years a new technique has i
been developed to study non-convex variational problems f
[25,14], namely the "relaxationf of the energy functional: M

starting with a variational problem which often does not I

have a solution one tries to formulate a second problem
having the same value and such that its optimal solutions
are exactly limit points of minimizing sequences of the
first. (For a review [15], Chapters VIII-X). This is the
method we are going to use here to prove existence of

solutions to min {gTFD(p) [fo=2} (see Theorem 3.3 below) .
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In Section 3.1 we formulate the relaxed problem
and we study the existence and uniqueness of solutions.
This is particularly simple because the relaxed problem
is an example of the models studied in Chapter two. In
section 3.2 we show that the solution to the relaxed
problem also solves the original one. 1In the last section

we discuss some properties of the solution.

3.1. The relaxed problem.

Consider the TFD energy functional defined by
(3.3), (3.4). If we are going to minimize ETFD(p) keeping
[o=A fixed, adding a term proportional to fo to ETFD(D)
does not change the minimization problem. For convenience,

let us define the functional

S (P) = Eppp (o) + afp = [k(p)dx - [Vpdx

1 -1 (3.5)
+ 5 [dx dyp(x) |x=y| To(y),
with a chosen to be 15Ce2/43 so that k(p)>_ 0 for all op.
Hence k(p) is defined by
k(p) = (3/5)0°7 = (3/4) %3 4 o (3.6)

with o = 15Ce2/43. Let us denote Py = (5Ce/8)3.

|
‘
f
|
I
"
|

|

1

|
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The function k(.) is obviously not convex. Let
f(-) be the function whose epigraph (i.e. the set
{(x,y) | x>0, vy > £(x)}) is the convex hull of the epigraph
of k(+) (or in other words f is the second Legendre trans-
,? form of k). By definition f is a convex function and it

is defined by (see figure)

f(p) =0 if p < pg
(3.7)
£(p) = k(p) if p > Poe
kip) 5 (9]
2
/ /
/
) ek “\ /// J
¢ N v»f’"/ ‘
[ ] - R |
s j: Po J ]
!
Corresponding to £ let us define the energy |
functional 1
|
1 -1 g
Eelp) = [f(p)ax - [ vpoax + 3 fdx dy po(x) |x-y| To(y) |
(3.8) ‘
and let us study the following minimization problem,
min {£:.(p) | o ¢ LAY, (3.9)

with,WaA defined as in (2.6b).
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Remark: The variational problem defined by (3.9) is
called the relaxation of the original non-convex problem
defined by Ek(p) [15].

The function f defined by (3.7) satisfies all
the properties (F-1) through (F-4) and therefore theorem

2.13 applies to the functional €e(p). Hence we have:

Theorem 3.1. (Existence of a solution to the relaxed problem):
k

k
Let V(x) = } z, lx-Ru[-l with z, > 0 and let z = | =z,.
i=1 * * * i=1 *t
Then for X < 2, there is a unique minimizing p for (3.9)

with fpdx = X such that

d(x) - &o <0 if p=o0 (3.10a)
p{x) - &O =0 if O<p(x)<pO (3.10b)
D(X)2/3 - Cep(X)1/3 + a = ¢(x) - 60 if p(x) > Por (3.10c)
with ¢(x) = V(x) - [dy p(y) ]x—y[_l, for some 50. Moreover
if A=z, §_ =0 and if A < 3, 3, > o. E.(A,V) = inf

{Ef(p)lpewax} is strictly monotone decreasing on [0,2]

constant on [Z,») and convex on [0,x), 60 is given by
dE
£

§ = - —=L

o OA
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Remark: The tilde over &O is used to distinguish it from
the chemical potential for the TFD problem. See Theorem

3.3 below.

3.2. Connection between the relaxed problem and the TFD
variational principle.

Since the function f defined by (3.7) is point-

wise less or equal than k we have,
E(0) > Eg(p)
for every peW. Therefore
min {Ef(p)lpswak} < inf {Ek(p)[pswak} (3.11)

Here we will show that the minimizing p for Ef(-)
in Wak'also minimizes Ek(-) in that set. Let us denote by p
the function minimizing Ef(~) in WBK (A £ 2). We start with

the following result

Lemma 3.2: If p is the solution to (3.10) then

u {x]0<5(x)§po} = 0 where p is the Lebesgue measure.

Proof: We recall the following bProperty of the Sobolev

space I—Il [45]: Let c be an arbitrary constant and ueHl, then

au
90X,
i

deduce that if ¢ is a constant and ust then Au = 0 a.e. on

= 0 a.e. on the set {x|u(x) = c}. Iterating this we




-41~

the set {x|u(x) = c¢}. Consider now the set f)= {x]O<5(X)pO}
U{x|p=0, ¢=$O}. on D , ¢=$O. For X near Ri ¢(x) is very

large and thus p>po. Hence I) is away from the Ri's. On

JD ¢=$O (a constant and ¢€H2 (because of Lemma 2.19).

Therefore A¢=0 a.e. on I) and consequently p(x)=0 a.e. on 19.

Hence u{x]0<5§DO} = 0. |_|

Because of Lemma 3.2, gk<5) = Ef(B) and there-

fore (3.11) implies

A

£¢(P) = min {£.(p) | PEWy, } < inf {g (p) | pewy,}

S8 () = g.(p).

Thﬁs o is the unique minimizing p for Ek(') in Wax'
(Uniqueness here is implied by the uniqueness of the solution
to the relaxed problem).

To conclude this section let us summarize the
results about the TFD minimization problem in the following

k v
Theorem 3.3: Let V(x) = z, ]x-Ri]-l with z; > 0 and

k i=1
let z = ] z,. For XA < z, there is a unique p which
i=1

minimizes £, (<) (defined by (3.3)) with [pdx = A. The
minimizing p is such that

1/3

5
077 =3 [Ce + (L + 4(8-40)) 1 if >0 _-a, (3.12a)

1
2
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3 .
P =p_ = (SCe/B) if ¢—¢O-a
and o =0 if ¢<¢O-a,

where ¢ (x) = V(x) - [dy o(y) lx-yl_l, for some ¢_ > o =
2,.3 L _ . .
lSCe/4 . Moreover if A=z, ¢Ofa and if i<z ¢O>a. ¢O is

given by

ETFD (A\) is strictly monotone decreasing and convex. TIf

A¥z there is no solution.

Remarks: (i) Recall here that Eppp (P) = & (p) - afp.
This is why ¢O = 0o in the neutral case.
(ii) Note that ETFD(Q) is not bounded from below

in W. 1In fact, as l]pl]l > ®, £

) > = o,

TFD (P

3.3. Properties of the minimizing solution.

(i) Properties of ¢ and p: Regularity properties of $ and i

¢ are established in section 2.7. TIn particular ¢ is a
continuous function going to zero at infinity. ¢ and o
are real analytic in the set {xlp(x)>po} = {xl¢(x)>¢o-a}.
The TFD density p has compact support even in the neutral

case and u{x[O<p(x)<po} = 0.

(3.12b)

(3.12¢)

(3.13)
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(ii) Dependence on Cg:

Hi

Theorem 3.4: Let 50 ¢o - 15C§/43 and V be fixed. Let

¢l (respectively ¢2) be the TFD pdtential corrésponding'to
1 . 2, . 1.2 . :
Ce (respectively Ce). Then if Ce>Ce, ¢l(x)§¢2(x) for all x.

In particular, for neutral systems, ¢TFD(X)5¢TF(X) all x,

Proof: Let ¢ = ¢2—¢l. Because of (i) ¥ is continuous and

goes to zero at infinity. Therefore S = {x|y(x)<0} is open

and Y = 0 on 3Su{~}. On S

- (am sy = P1=Py 2

v
(]

2

is increasing in Ce (on S). Hence ¥ is superharmonic on S.

~ i
because, for fixed @O, pl/3 -2 (Ce + (CZ/lG + 4(¢—¢O))2)

Since ¥ = 0 on 3Sy{x} the maximum modulus principle implies

S is empty and therefore ¢,(x) > ¢,(x) for all x. ||

(iii) Two-body atomic potential:

-~ The no-binding theorem 3.14 (Teller's theorem) also holds
here. Hence there are no molecules in the TFD model.

- For a one center potential (i.e. V = z]x]—l) the solu-
tion p is spherically symmetric and decreasing in x| (see
Chapter 4, Theorem 4.11)). Therefore the support of the

minimizing solution has finite radius R Certainly

RO < (3}\/47rpo)l/3 .
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- In the neutral case (A=2), if one studies two centers
separated by a distance R>Rol + Roz, with ROi = (321/4ﬂpo)1/3,
the minimizing solution p is going to be equal to the one
center solution Py around Rl and p=0, around R2 and 0
everywhere else. This can be easily seen considering
the uniqueness of the solution. This implies that the
two-body energy is 0 if the atoms are separated by more
than R.

- More (heuristic) information about the TFD interatomic

potential can be found in ([48], Section 3.5).
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CHAPTER 4: THE THOMAS-FERMI VON WEIZSZ:CKER THECRY

The TF and related theories (see Chapter 2),
attractive because of their simplicity, are not satis-
factory for atomic problems because they yield an eléctron
density with incorrect behavior very close and very far
away from the nucleus. Moreover; they do not allow for
the existence of molecules. Von Weisdcker [49] suggested

the addition of an inhomogeneity correction
U () = ¢ (ap)2/p (4.1)
W weeme ae ‘ -

to the kinetic energy density. Here Cy = h2/(327r2m) =
(2a72)~2/3 4, units in which the coefficient of the p°/°
term is 3/5. The Von Weisicker corréction has been derived
in many different ways. It can be obtained as the first
order correction to the TF kinetic energy in a quasi-
classical approximation to the Hartree-Fock theory via a
steepest descent computation [27]. The correction to the
TF energy that this additional term yvields is of the order
5/3

Z + i.e. of the same order as the exchange correction.

Numerical computations using the TF Von Weisacker theory ”
(henceforth TFW) give too high values of the ground state
energies of atoms and it has been proposed to reduce the

constant Cy by a factor 9 [22,23,27]. wWe will not discuss ]
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that here. Our main concern, however, will be the study
of the variational'problem defining TFW. The existence
of a unique soluticn minimizing the TFW energy functional
(4.2) in the set {p] fpfk, >0} is established [Theorem 4.7
below]. The question of existence of a solution in the
set I, = {p] [o=1, p>0} is harder than in the TF case.
In the one center case (TFW atom) we show that there is

a unique minimizing solution in IBA for A<Z. It remains
as an open problem to determine the largest A for which
this is still true. Recall that for the TF related
theories the largest A is Z. Another open problem is to
prove the existence of binding within the framework of
TFW theory. We do not have any result in this direction.
Note, however, that E_(p) = fUW(p)dx is subadditive as a

function of p, i.e. Eg(py+p,) < Eglpy) + E(py) (see

Theorem 4.3 below), and therefore does not satisfy the

hypothesis of Baxter's Theorem ([3] Proposition 2; Chapt=<
er 2 Theorem 2.14). This leaves open the possibility for
binding. Gombas [21] applied the TFW theory (including
exchange corrections) to study the Nz-molecule and he R
found numerically that there is binding. He actually :
computed the distance between the two centers to be

1.39.2, for the configuration of minimum energy. There
is also a non-rigorous argument of Ballzs [2] that , i
indicates the possibility of binding for a homopolar .

diatomic molecule in the TFW theory.




-47

In sections 4.1 and 4.2 the existence and unique-
ness of a minimiziﬁg solution in the set IA is determined.
In section 4.3 it is proven that the minimizing solution
is a strong solution to the TFW equation (4,14) and regu=-
larity properties of this solution are established. 1In
section 4.4 the TFW atom is studied and in section 4.5 the

components of the energy and their properties are discussed.

4.1. The TFW functional

The TFW theory can be defined by the following

energy functional

E@,v) = ¢y [ Pax + 2 [?) 5 Pax - fvylax

(4.2)

+ % { dxdy w(x)2lx-y!-l W(y)2: ;

fi

defined on the function space ﬁ
it R =ty per?, wper?) . (4.3) f

The Sobolev space Hl(R3) is a Hilbert space with respect
to the inner product ((u,v)) = (u,v) + (Vu,Vv) ((u,v) =
Juvdx). 1In terms of ¢ the single particle density o is '

o(x) = w(x)z. We are interested here on V's of the form B
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K -1
V(ix) = ) z, lx—Ril ’ zi>0. (4.4)

Before we proceed with the proof of existence

and uniqueness we claim that if weHl
2
[ (v]w]) %ax < [(ve)2ax

and thus &(|y],V) < £(¥,V). Therefore we can restrict the
function space over which £(-,V) is minimized to

I = {v] weHl

, U0} (4.5)
The proof of this claim uses the same method as in Kato's
theorem [39]: if wE = (wz + 82)%, then for Y smooth
¥, V¥_ = YVy and thus ]vwel < |vy|. For arbitrary weHl,
mollify ¢ as in the proof of Kato's inequality.

For the same reasons given in the minimization
problem of Chapter 2, it is convenient to define

{per| fvlax < A} (4.6a)

-
It
A

{pe1| fv2dax = A} . (4.6b)

Toa =
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Note that wsHl <=> weLz, VweLz and therefore by using

Sobolev's inequality [7]
[ (vy)2ax > k(fvlax)1/3 , (4.7)

(K = 3 (Tr/2)4/3 is known to be the best possible constant)

we see that weHl implies w€L6. Hence weLP for every

2<p<6. In particular w2€L5/3.

5/2

Theorem 4.1: Let Vel + L° and let E(Y,V) be given

by (4.2) then:
(i) If eI, &(y,V) exists.
(ii) 1If Y, Vel and j]wn-w}]Hl + 0 then\E(wn,V) + E(y,V).
(iii) oOn each I, (A<w), £(y,V) is bounded from below.
(iv) Fix A, E,- Then Jc<o such that Yel, with £(¥,V)<E_

implies ][w[[Hl < c.

Proof: (i) yen' implies yer® all p g [2,6] and in particular
v2e%/3.  Therefore, by ([32], Theorem II.2a)) £(y,V) -

¢/ (70) 2 is finite. Since per® we have E(y,V)<w. (ii) If
¥, Yel and ]]wn—wllHl + 0 we have [[wn-wllp +~ 0 for 2<p<6.
Hence ([32], Theorem II.2b)) and ]{V(wn-w)llz > 0 imply
S V) > B, V). (111) E(,V) > ¢ [(vy) 2ax -[vy2ax,

5/3

since f(wz) > 0 and [dxdy v (x) 2 [x-yl—l \p(y)2 > 0. Using

Holder's and Sobolev's inequalities we get
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11921155 < 2272 7373 [wy] 1§75 .

Since V = vV, o+ v, with vV, € L” and v, € L5/2, Holder's

inequality and the above estimate yield

2 2/5 _,-3/5 6/5
£,V 2 Cp ¥ = Allvyll, = 223 k75 v |, v/
(v = ||v¥]],), which is certainly bounded from below.
(iv) From (iii) we have ||vw|]Z< d for some finite d.
. 1/2 —
Since < A we have U < C.
o1, < 19l Izl
Remark: E&(¢y,V) is also bounded from below in I since
ey, v) > ETF(WZ,V) which is bounded from below in W [32].
Let us now define
E(\,V) = inf {£(y,V) | ve I} . (4.8)
5/2 P
Theorem 4.2: If vel + L for some 5/2<p<x, then
E(A,V) = inf {E(yY,V) | ¥ ¢ I} .
. 1 3 X
Proof: Given y ¢ CO (R™) M I, we can find wne I,, such that

~

g(wn,v) > £(Y,V). In fact let wn =P + Zn where An is

supported in R3/supp (V) and it is the translate of
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( exp (-n2/3([xl-nl/3)-2) if lxlfnl/3
L
- -% 2,7
A(x) = cn? (A=]]y]]2)
n 2" (4.9)
0 if |x|>n/3
and ¢ = 47 fi exp (-2(1-r)"%) r?dr. wote that
(1) [ 2 ax = O=11vl12) Voo
(i1) [ (8 )¥ax = a n(2-%)/2 (4.10)

(ii1) [ (vA)%dax = b n~2/3

for some positive constants a,b and k>2. Therefore f(VAn)zdx
and f(An)kdx go to zero as n»w. Hence [ widx = A
(i.e. ¥ e I,,), [lwn-wlls/3 ~ 0 and ltw-wnllr + 0 as n»w®

for any r>2. Moreover, since f(VAn)zdx + 0 as n+«, by a

simple modification of Theorem 4.1 we have
E(Wn,V) - E(y,V). ' (4.11)
Thus

inf {g(lplv) , 1P € Ia)\}

A

inf {€(@W,V) | ¢ € IAf\Cé}

it

inf {E(,V) | ¢ ¢ I, }.

The last equality follows from (4.11) and the density of Cé
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As a consequence of this theorem we have that
E(A,V) is a monotone non-increasing function of A whenever

v e /2, P, 5/2<p<e. Moreover, E(A,V) is bounded from

below (see remark below Theorem 4.1).

Theorem 4.3 (Strict Convexity): Fix V and let y = (awi +

| (1-&)11)3);i for ae(0,1) with Y ,¥, ¢ I and wi » wg a.e.

Then,
EW,V) < a E(Py,V) + (1-a) E(Y,,V).

Proof: Because of ([32], Theorem II.6), we need only

check
(4.12)

(V) 2 <avp)? + (1-a) (vy) 2.

This is the same as proving

(091 7dy + (1-a) 9,7 % < (apd + (1-a)¥d) (a(7yy)?

+ (1-a) (7y)7)

which follows from Schwartz's inequality. ||

in (4.12) and integrate over dx. We get

N =

Remark: Let o =
By (Py¥ey) S Eyplog) + E(p,),

i.e. the von Weizsdcker correction is subadditive in p. As
we have remarked in the introduction this leaves open the

possibility of binding in the TFW theory.
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Corollary 4.4: There is at most one wo £ IA with
&§(Wo,V) = inf {£(y,V) | ¥ ¢ I,}. The same is true if

I, is replaced by I or Iy

Corollary 4.5: Suppose V ¢ LS/2 + LP with p > g. Then:
. 2
a) If ¥, minimizes £(y,V) on IAo and fwo <lgs then

E(A,V) = E(AO,V) for alil A<Ao, when p<w,

b) If £(y,V) has a minimum on ISA for all Asko, then
E(X,V) is strictly convex on [O,Ao].

In particular E(A,V) is convex in X.

Proof: See Corollary 2.9, |7

4.2, Existence of a solution in IA'

To prove existence of solutions in IA we use the
Same technique as in Chapter 2. Wé first prove that
E(Y,V) is lower semicontinuous in the weak nl topology.
Since £(A,V) is Coercive (Theorem 4.1) and gl reflexive,
the proof of existence of solutions follows by the Banach-

Alaoglu theorem [38]. Uniqueness follows by Corollary 4.4.

Theorem 4.6 (weak lower semicontinuity of E(W,V): Let

YV ¢ L5/2 + 1P 5/2<p<®, Then €(-,V) is lower semicontinuous
on each IA (A<®) in the weak Hl tdpology, i.e. if Yhp > ¥ in

weak Hl, then
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wni such that wn_’+ Y, in weak Hl. We need only check
i

flwwllg < A. This follows since lim fwg > fwi. There-
fore by Theorem 4.6 and Corollary 4.4, there is a unigue

Y e I, with £(y,V) = E(A, V). ||

A

4.3. Connection with the TFW equation.

In this section we study the Euler equation

associated with the TFW variational principle. First
we show that the minimizing ¢ for £(-,V) on Loy is a
weak solution of the TFW equation (4.13) and then we
use elliptic regularity to prove that in fact ¢ is a

strong solution. This is a standard procedure in the

it

study of variational problems.

5/2 P

Theorem 4.8: Let V e L + L° for p ¢ (é,m).

a) If v e 1 and &(y,V) = E(A,V) then ¢ satisfies (in

3A
distributional sense) the equation

2/3

2 _
[-Cpd + (¥°) - 6] P(x) = - o W (x), (4.13)

for some ¢_ with ¢{x) = V(x) - IW(y)Z |x—yf—ldy. More-

over ¢o = - dE 4nd thus ¢o > 0 (because of Theorem 4.2).

dA

1

b) If ¢ € H- is any function (not necessarily minimizing)

satisfying (4.13) in distributional sense for any ¢O then
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g£(y,v) < lim &(¥,,V)

Moreover, if E£(¢,V) = lim E(wn,v)‘then each term in g(wn,v)

converges to the corresponding term in £ (y,V).

Proof: Positive definite quadratic forms are always

non-increasing under weak limits [43] therefore

Lim [(vp_ )2 > [(vp)?

lim fwn(x)2 |-y | ™1 yp(y) 2axay >

f(x)z Ix-y!_lw(y)2 ax dy.

TN G G e N

. 2 2. .
That lim fwnv = [Y"V is proved in ([33], Theorem 2.1).
That lim fp2/3 > fp5/3 is easy (see [32], Theorem II.1l3

or Chapter 2). |_|

Theorem 4.7 (existence of a unique solution in IA): Let

vV g L5/2 + LP, with 5/2<p<~, Then for all X there is a unique

Ve I, with E(v,V) = E(A,V).

Proof: Pick a minimizing sequenée Y € IA so that
—_— n
£(y,,V) + E(A,V). By Theorem 4.1 (iv) |[Vy [], < =.

Since [lvyl |, < A we then have [}wn[[ < », Thus by

2 ul
the Banach-Alaoglu theorem [38], there is a subsequence
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wni such that wn_ > ¢ in weak Hl. We need only check .
i

||ww||§ < A. This follows since lim fwg > fwi. There-
fore by Theorem 4.6 and Corollary 4.4, there is a unique

Y e I, with £(v,v) = E(A, V). ||

A

4.3, Connection with the TFW equation.

In this section we study the Euler equation
associated with the TFW variational principle. First
we show that the minimizing ¢ for £(-,V) on IBA is a
weak solution of the TFW equation (4.13) and then we
use elliptic regularity to prove that in fact ¢ is a
strong solution. This is a standard procedure in the

study of variational problems.

5/2

Theorem 4.8: Let V £ L + 1Y for p € (%,w).

a) If yp e I and £(y,V) = E(A,V) then ¢ satisfies {in

A
distributional sense) the equation

[-cp + 093 =601 vt = - ¢ vix), (4.13)

for some ¢ with ¢(x) = V(x) - [o(y) 2 |x-y]—ldy. More-

over ¢, = - 9E ang thus o > 0 (because of Theorem 4.2).

dA

1

b) If ¢ € H- is any function (not necessarily minimizing)

satisfying (4.13) in distributional sense for any ¢O then
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(i) ¥ e cO(rY),

(ii) xw (VIS L5/3, where xw = (¢ - (w2)2/3)-

Proof: The proof of a) is standard. Simply replace VY

by ¢ + ag ¢ Ej; (Schwarz space) and compute the derivative

di
the convexity of £(y,V) in p=w2 (see for example [32],

Theorem II.10). To prove b) (i) note that since ¢ € L6,

2
loc®

of £ (y + ag) at a=0. That ¢, = - dE f£ollows easily using

Y e L?oc for any 1l<p<6 and therefore (w2)2/3‘¢ e L

Since ¢ € L5/2 + 17, o Y e Lioc' Then, if ¢ obeys (4.13),
3

-AY eL2(Q) for any bounded subset of R”. Therefore Yy

belongs to the Sobolev space W2’2 (). By the Sobolev's

imbedding theorem yeC®(R) (if @ is sufficiently regular)

- and hence wsCO(R3). (b) (ii): Since WEHl, weL%\LG and

3. By Young's inequality [dy w(y)2 |x--y|-l

5/2 +/Llo and thus ¢wsL5/3

/3

thus wzsL

5/2 10

e L + L~ . Therefore ¢eL

by HSlder's inequality. Also (w2)2/3w€L5 because

yen2n 1O, |~ |
To prove that §y is in fact a strong solution

of equation (4.13) we restrict to V's of the form (4.4).

Theorem 4.9: Let V be of the form (4.4) and let ngl be

any function (not necessarily minimizing) satisfying (4.13)
in‘distributional sense for ¢O>0. Then wec“ away from the
Ri's and goes to zero at infinity and hence ¢y is a strong

solution of (4.13).
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Proof: The proof that tpeC°° is a standard bootstrap argu-
ment (see [39], section 1X.6 for example). Here, we
follow Lieb ( [29], Theorem 8). If ¢_>0, let Y = (47|x|)~%

exp (—(<%/CW)%IXI) be the kernel for (-A + (¢o/cw))‘l.

1

verF for l<p<3. We write ¢ = (CW)_ (wa)*Y, where ¥

v

is defined as in the previous theorem.:- Since Y€L5/2 and
xwwsLS/B (by the Theorem 4.8 b(ii)), ¥ is bounded and

goes to zero at infinity [41]. Now, fix xoeR3\jRi,i=l,...,k}
and let fscz be a function which is 1 near X,. Let

Y1 = £y and wz = w—wl. Moreover let ¢ = wa + wb where

Y = c-1 (x wz)*Y. Since wz vanishes near Xor wa is ¢~

a W Y
near X . Assuming that weck (k>0) a neighborhood of

k+1 - . g 2
X, we shall prove YeC near xo. Let p—pl+p2 with pl—wl

and Py = (wz)z + Zwl wz. Since p2 is zero near xo,

le—l*p2 is harmonic and hence C” near x_ . Since p, has

k

compact support it is in all ¥ and oy is C" near X,

Then |x| lap is X near o+ Hence x, is ¥ near X
(recall X is away from the Ri's), and therefore wal is
Ck near xO and has compact support. Hence wb = (CW)—l

. k+1 —
(xwwl)*Y is € near x_. ||

To conclude this section we prove a property

of the minimizing ¢ which will be useful in the sequel.
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Theorem 4.10: Let V be of the form (4.4) and consider

veH! such that Y has compact support and fwzdx = A
k

<z =}

i-1

Proof:

have

where a',

with

£W,v)

.. Then
i

inf {E(W,V), wEI} o

v

ick § = ¢ + En' Zn defined as in Theorem 4.2. We

]

)% = [(uy)2 + a1 n=2/3

4

f(m2)5/3 = j(w2)5/3 + bt n*2/3

b' are some positive constants. Also

JU2 4 2 8 @2 0x1Th = - w2+ L 2207 s

1 .~ - ~ -
P=-32 fAi (v - 2, ]x|"L - Aﬁ*[x] Ly .
382w o= w2 x7Y).

Since An is spherically symmetric ffAi =‘f[f]A§ for any

function £, where

{£1(r) = (4m) 1L f £(rQ) 4o

S
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is the spherical average of £. Since fwz = A and
fAi = 2-A we have ([32], Theorem II.17) [v - wz*lx]_l]i

(z=A)/r and [V - wz*lxl"l - &ﬁ*lxl'lj > 0. Therefore

/ (z-A)r_lAi = - q n1/3 ,

N

P < -
with d a positive constant. Hence
EW,V) < E(W,V) + (atb)n™2/3 _ g ,~1/3

Taking n large enough we get E(Y,V)<E(Y,V). |~

Remark: Theorem 4.10 also applies to TF theory. ' However,
it does not hold in the TFD theory because of the fp term

of the energy functional (3.5).

4.4. The one-center case: TFW atom.

In this section we restrict ourselves to V of
the form v(x) = zlxl-l, 2>0. For this particular V we are
able to determine the existence of a minimizing solution
in Iax for A<z (see Theorem 4.13 below). We think this
should also hold for V's of the form (4.4) although we
are unable to prove it. Additional properties of the
minimizing ¢ are established. 1In particular we prove

that the minimizing ¢ for E(-,V) in Isy is a symmetric
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decreasing function of |x|, for A<z. It will be necessary
to use some inequalities about the symmetric decreasing
rearrangement of a function, and we therefore review
some of the main facts.

Let 8 = {£:R3 » [0,%) [£(x) < £(y) if
|x|>|y|} be the symmetric decreasing functions. If y is

the characteristic function of a measurable set in R3,

we define x* by

X*¥(x) =1 if dnlx|3/3 < |[x]],,
X*(x) = 0 otherwise.
We see that y*eS and l’X*l'1'= llxlll. Given f:R3 » [0,«),

let xg(x) =1 if £(x) > a, xi(x) = 0 otherwise. Then
= [© Jf .
f(x) = fo X5 (x)da. Define
%
£x(x) = [7 xT(x) aa.
o) a

Clearly f*eS and for all a, u{x[f*(x)ia} = u{xlf(x)ia},

where u is Lebesgue measure. Then for all p>1

llf*llp = llfl!p (4.14)
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The following two inequalities about symmetric decreasing

rearrangements will be needed:
. 3
(i) If f£f,9:R°—[0,x)
ffg dx < ff*g*dx, (4.15)
. 1 1
(ii) If feH™, then f*ecH™ and

. (4.16)

*
oel ], > lver] ],

Remark: a simple proof of this last inequality is given in

([29], Lemma 5).

The following theorem is due to E. H. Lieb

(unpublished) :

Theorem 4.11: Let V(x) = z]xl—l and o e LN 13/3, 1f

fo < z then

-[ Vo + 5 Jetoxlx]Th 2 - fvor + I fox (oxulx| 7).

Proof: We write,

folox|x|™Y) = = fvox + [Vip*=p) + [o(|x]| Lep*)

N

- pr +

-1 -
- % fox (x| Txo*) + % [o=o%) [lx] Fatp-p"1 >

fv
i

fvp* + % for (x| tep*) + fo(p*-p), (4.17)
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where ¢ = V - (le—l*p*). The last inequality in (4.17)

follows because |x| = is a positive definite kernel. Note

that ¢ is a function of |x| only and

o(r) = zr 1 - r-lfz ars?p*(s)ds - f: 4msp* (s)ds.
Thus

9% - —lv(- z + fr 4ws2p*(sjds) < ()\-z)r—2 < 0.

or r2 o - -

Hence ¢=¢* and the theorem follows from (4.15) and (4.17). ||

Corollary 4.12: Let V = zlxlnl and let ¥ be the minimizing

Y for &(-,V) in I, with A<z. Then yeS, i.e. ¢ is a

symmetric decreasing function of |x|.

Proof: For every ye I, (A<z) we have £(y*,V) < £(y,V)

because of (4.14), (4.16) and Theorem 4.11. ||

We now study the existence of a minimizing

solution in ISA:

Theorem 4.13: Let V = z|x|”!. Then for A<z the minimizing

v for £(-,V) on I, has fwzdx = A.

A

Proof: Suppose that the minimizing ¢ has [y2dx = Ag<h.
Then by Corollary 4.5 Y minimizes £(-,V) on all of I, so

by Theorem 4.8 the corresponding ¢O is 0. Thus Yy obeys
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where

o = z|x|™F - (Wwha«|x]™D). (4.

Since A<z, ¢>0 and thus (since ¥>0)

—C Ay + W23y 5 0. (4.
Let g = 7372 5o that for r>0
Ag = 3q7/3/4. ' (4.

By theorems 4.10 and 4.12, ¢ is strictly positive. Let us

fix R>0. We will show

Y -~ cqg >0 for r>R, (4.

where 0<c<min (RB/zw(R), (3CW/4)3/4). Let
D = {x| ¥-cqg < 0} M {r>R}. Note that Y- cq is continuous

for r>R because Y= Co(Ra) (Theorem 4.8 bi)).

Therefore D is open. On D,

3
=Cy & (Y=-cq) > cq7/3 (-%“l - c4/3) 0,

- ¢ =0, (4.

18)

19)

20a)

20b)

21)
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i.e. Y=-cq is superharmonic on D and Y-cg > 0 on 3 Dy {=},
Hence by the maximum modulus principle it follows that D

is empty and ¢ > cqg for r>R. This in turn implies

[ v?ax > 4mc? [ 4 - o
R r

which contradicts [y2dx = ro<ze ||

Remark: The only fact that is missing in order to prove
this theorem for a generallv of the form (4.4) is that ¢
is not necessarily non-negative for those V. However, f?
much less is required to prove this theorem. It is enough
to have a bound of the form ¢ > - E? for some positive
constant a. We conjecture this boind is true as long as
A<z,

To conclude this section we give a remark about

the chemical potential - ¢O. It is clear from (4.2) that

E(A,V) > inf {C,f(Vy)2ax - fvwzdle€IaA} = - a22/(4cy) . (4.22)

¥

(This is in fact the variational principle for the Hydrogen

atom in Quantum Mechanics.) Now, consider the trial function
1/2
ba(o) = oadmt/

Minimizing the energy with respect to A we get

exp (-Ar), A>0, so that fwidx = A.

E(A,V) < min{E(y,,V)[a>0} —

= - (\/ag) (z - 242

5x , 2/3
16) / (1 + COA ),
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which holds for z > 50/16. Here C_ = (3/5)4r72/3,

Combining equations (4.22) and (4.23) we get

lim (E{(A,V)/A) = - 22/(4CW) |

Avo P

i.e. ¢ (A=0) = z2/(4cW) , i
(@]

Since ¢ _ is decreasing in A we have ¢ efo,zz/(4c )1, i
© © W g

4.5. Components of the Energy, Virial Theoren, Scaling and
Pressure

To finish this chapter, we give a brief look at
the components of the energy and their relations. TLet
us denote

- 2
B, = Cp f(vp)“ax (4.24)

where ¢ is the minimizing ¢ in IA' K, A, R and U are
defined as in TF theory (see Chapter 2). Let
l—l

e(},V) = E(),V) + ) 2;25|Ry-R.| 7. (4.25)

1<i<j<k J
First, we remark that e is continuous in the nuclear
charges z; and it has continuous derivatives with respect to

the Zi‘ Moreover,




k
I oz, % = a4 o2u. (4.26)

To prove this fact one proceeds as in the proof of the

Feynman-Hellman theorem in TF theory (see [32], Theorem
ITI.16). The same holds for the dependence of e on CW;

namely, e is continuous in CW and it has continuous

derivative. Moreover,

de
Cw iy - Ewe (4.27)

Theorem 4.14 (virial theorem for TFW): 1If V = z[xl—l and

Y minimizes £&(.,V) on any IA then

2(E_ + K) = A-R. (4.28)

Proof: Proceed as in the proof of the Virial Theorem in

3/2

TP, Let wu(r) = U Y (ur) . Then E(u) = uz (EW + K) -

HA + UR. Because of the minimization preoperty of ¢,

JE

35 =l = 0 and therefore (4.28) follows. |~

Theorem 4.15: Let ¥ minimize £(+,V) on any IA' Then for

V given by (4.4),

(5/3)R + EW = A - 2R ~ oA - (4.29)
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Proof: Either use the TFW equation (4.13) or directly the

minimization property of ¢ as in ([32], Theorem II.23). ||

In particular, for the TFW atom (4.28) implies

=- (K+E). b
e ( W) ]

Scaling Properties: It is straight forward to check that }W

for 2>0, the minimizing ¢ satisfies the following scaling fﬂ

relation,

V(z,Cyur tRiix) = 0% y(dz, 22cy,03 R,

=K

This in turn implies that under a uniform dilation

Ri > 4R; (2>0) the energy e scales as follows:
e(2) = elz,Cp, 2, 2R = 277e (232,22, 230,R.). (4.30)
= Lrpwr e i “ W’ ’ i/ e

Pressure: It might be important for the discussion of

binding within the TFW theory to have an expression for

the pressure. (This was indeed the case in the TF theory.
See [5], for example). The pressure corresponding to a

uniform dilation is defined by [32,5],

de

p 1
382 9% |,y

Il
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Because of the scaling relation (4.30) we can write

k

de Jde de de
==-Te+ 3 [} z, 254 2c. 28 4 3 2¢ (4.31)
I 1Ly Ci o3z W 3C DY

Equations (4.26) and (4.27) and the Theorem 4.8 imply
1
P =3 (7e - 6U + 3A - ZEW + 3¢OA) (4.32)

Using the virial theorem 4.15 and equation (4.32) we get

W=

P = [e + (EW + K)] . (4.33)
Remarks: (i) P=0 for an atom, as it should be!
(ii) If CW=O, expression (4.33) reduces to the TF

(e + K).

W -~

pressure P =
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CHAPTER 5: THE FIRSOV'S VARIATIONAL PRINCIPLE

It is a well'known fact that convex variational
principles have a dual variational problem associated with
them. The dual P* of a minimization problem P is defined
as a maximization problem having the same value, i.e.
satisfying min(P) = max(P*). Moreover the function space
over which P* is maximized is taken to be the dual of the
function space over which P is minimized. There is a
systematic procedure to construct a dual problem given
the original problem. For a review see [40] and (r1s3,
Chapter III). Dual problems are useful as a variational
tool for finding lower bounds to the original minimization
problem. These bounds, together with upper bounds provided
by the minimization problem itself, allow us to get estimates
on the value of min(P).

It is natural, therefore, to ask what is the dual
of the TF variational principle. (We consider here only
the TF variational principle without the eonstraint [p=2
so that when V is of the form (2.2) the minimum is attained
for the neutral configuration). This dual problem was first
introduced by Firsov [18] who was interested in computing
estimates for the energy of a two-center molecule in TF.
The Firsov's variational principle is defined by the

functional

T = =-(sm™t fve)%ax - (2/5) [ wv-£)°"2ax. (5.1)
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One is interested in sup'F%f), where the sup is taken over
all f such that [(Vf)? < =, f(v-£)>"2ax < @ and v-f > 0.
The coefficients (SW)—l and (2/5) are chosen in such a way  @
that sup -?3 (£) = inf ETF(p). A heuristic derivation of |
the Firsov's principle starting from the original TF func- ﬂ
tional, using the systematic approach of [15]1, 1is given ;&
in the Appendix to this chapter.

After the first applications by Firsov himself
[19]1, the Firsov's principle has been repeatedly used to
compute estimates on the energies of molecules in TF and
in particular on the two-body atomic potential. For a
review of results in this direction we refer to the book
by I. M. Torrens ([48], Chapter II). This principle can
also be applied to compute the long range behavior of the

two-body atomic potential. (For references to this, see

[111).
In section 5.1 we establish the connection

between the Firsov's principle and the TF equation. The

existence and uniqueness of solutions to the TF equation

[32] will then imply the existence of a unique maximizing
£ forfF(-). In section 5.2 we study properties of this

solution.
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5.1. Existence and Uniqueness of a Solution.

Instead of considering the functional (5.1) with

the constraint v > £, we will rather consider

1

£ (6 = - 8m7 f(ve) 2ax - Zliv-n?%%x (5.2
without that restriction. It will turn out that the maximiz-
ing f for ﬁ%-) satisfies Vv > £ and therefore it also maxi-
mizes (5.1). This also allows one to consider more general
trial functions when estimating supfr .
’ k

Let V(x) = | gz, lx—R.I-l, z2,>0. (More general

121 i i i

V's can be considered by suitably changing the function

space B, below).

Consider the function space

B={f | Vf ¢ L2, £ ety .
B is a Banach space with respect to the norm

il = 1vell, + 11g]],.
Moreover B is reflexive. (The same proof of the reflexitity
of the Sobolev spaces [1l] can be applied to B).

We want to maximize ﬁ%-) over the set

I =1{f]| feB, ]]V—fl]s/z < o},
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Let us first establish the connection between the varia-
tional principle and its Euler equation.

A

Theorem 5.1: If f maximizes-F'on I then f satisfies (strongly)

the Euler equation ' i

-(4ﬂ)-lAf - [(V-f)zl% (v-£) =0 . (5.3)

Proof: By replacing £ by £ + oh in (5.2), with h ¢ E;

(Schwartz space) and computing the derivative of ﬁ’(f + oh)

at a=0 we prove that a maximizing solution for:ﬁ(-) satisfies
(in distributional sense) the equation (5.3). Since f ¢ L4,
2 3/2 2 2
f e Lioe® Also (v-f) € Ly, @nd therefore Af ¢ Liges BY
the Sobolev's imbedding theorem f ¢ CO(R3). Adding and
substracting a constant times f in (5.3) we can write
f = Ye * [(V—f)3/2 + ef] , (5.4)

- 1
where Y_ = [x| 1 exp (-(4me)*|x|) is the kernel for

(-(am) 712 + )7L, since v-f e 1.5/2, (vo£)3/2 . 15/3 and,

because Ye € L5/2, we have that Ye * (V-f)3/2 is continuous

and goes to zero at infinity [41]. By the same reason, since
4/3

f e L4 and Ye e L f is continuous and goes to zero at
infinity. Moreover, by exactly the same analysis of ([32],
Theorem IV.5) f is C away from the Ri's. (See also Theorem

4.9 of this thesis). Hence f is a strong solution to (5.3). f:l
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Theorem 5.2: There is a unique maximizing solution for §9(-)

on I.

Proof: Uniqueness follows immediately from the strong con-
cavity of:ﬁ. As for the existence, set ¢ = V=-f, Because of
(5.3) ¢ satisfies the TF equation

1

-(47) "~ d(x—Ri)

k
ap + 6372 < L oz,
i=1

which has a unique solution ({321, Theorem II.20). Then

Theorem 5.2 follows from Theorem 5.1. 7]

5.2. Properties of the maximizing solution.

We now check that in fact 0<£f<V and, therefore,
the maximizing solution for T?(-) also maximizes the Firsov's

principle.

Theorem 5.3: The maximizing f forj?(-) satisfies:
0<f<v.

Proof: (i) ft<V: Let g = vV-f. Since f ¢ CO(R3), g is
continuous away from the R.'s. Let S = {x|g(x)<0}. s is
disjoint from the Ri and since g is continuous, S is open.

Moreover, g=0 on 39S u {x}. oOn S, =Ag>0, i.e. g is super-

harmonic on §. By the maximum modulus principle § is
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therefore empty and V>f everywhere. (ii) 0<f: As in
Chapter 4 (below equation 4.4) f(V,fl)z < f(Vf)z. Also
[(v=|£])>/? < [v-£)°/2, ||

Finally, an easy computation shows that the TF

and Firsov's principles have the same value, i.e.

inf & (p,V) = sup -F(£).
o} £
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APPENDIX

We derive here the Firsov's principle from the
TF functional by using the approach of Temam and Ekeland
[15]. This derivation is heuristic and applies not only
to the neutral case but to the subneutral case as well.

Consider the following family of perturbed

variational problems:

E(p,p) = %fps/3dx - [vedx + %f(p+p)(x) Ix-y|™1 (p+p) (y) axdy

in such a way that

E(p,p = 0) = Epp (0) .

Consider the Legendre transform to Elp,p), namely

E*(p*,p*) = sup [[pp*dx + [pp*dx - E(o,p)1 . (5.5)
0,P

Then the dual variational problem (Firsov's principle) is

defined by the functional

*
Firsov

g (p*) - &*(0,p*) . (5.6)

lThe supremum on p is taken only over the set
{p]p>0, [p=21l.
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From (5.5) and (5.6) we get,

* 3, 5/3 1 -1 |
~ErirsovP*) = sup I- =[077 + [Vo - Ffp(x)[|x-y| "o (y) |
Firsov sz,fp=k 5 2 ?
(5.7) f

+ I(p)1 ,

where 1

I(p) = sup [ pb - [o(x) |x-y| lp(x) - %IP(X> Ix-y| " Tp(y) 1.
p

The supremum of this last expression is attained for P
satisfying

p*(x) - [Iply) + p(y)] IX-yl—ldy =0

or equivalently

~(am L

Ap* = (p + p),
and the value of I(p) is
2 -
I(p) = g% [ (Vp*)“dx - [op*dx + % fp(y)lx—y] lp(x)dxdy.

Replacing this back into eg. (5.7) we get,

3, 5/3 1 2
—E*, (p) = sup [~ =fp + == [(Vp*)
Firsov sz,fp=k 5 8

f (V-‘P*) Q] - 4 /1
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The supremum here is attained for p satisfying
2/3 | H

+ p = (V—p*-“)+ 14 bo

where (x)+ = x if x>0 and (x)+ = 0 if x<0.

. i o
Finally, the expression for E%irsov (p*) is
* -1 2,2 5/2
_gFirsov (p*) = BT [ (vp*) '*g‘f(V"P*-U)+ + ur  (5.8)

Remarks: (i) For the general model defined by (2.1) the Firsov's
functional should read
* 1 2
—gFirSOV(p*) = g7 I(Vp*) + f f*((V-P*-H)+) + UA,
where f£* is the Legendre transform of f.
(ii) It remains as an open problem to study the

variational principle

*

*
Firsov (p*)

sup &£

for the case p#0. (The case u=0 was studied in this chapter),
and its connection with the original problem. In particular
one should prove

(p*) .

o *
l;f Epp(0) = s;E Erirsov
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