RAYLEIGH-FABER-KRAHN INEQUAL-
ITY — Inequality concerning the lowest eigenvalue of
the Laplacian, with Dirichlet boundary condition, on
a bounded domain in R" (n > 2).

Let 0 < A1(2) < A2(Q) < A3(2) < ... be the
Dirichlet eigenvalues of the Laplacian in Q C R",

e, "
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Here A is the Laplace operator, 2 an open bounded
subset of R™ (n > 2). If n = 2, the Dirichlet eigen-
values are proportional to the square of the eigenfre-
quencies of an elastic, homogeneous, vibrating mem-
brane with fixed boundary.

The Rayleigh-Faber-Krahn inequality for the
membrane (i.e., n = 2) states that

—Au = Au in Q,

u=20 on the boundary of Q.
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where jo,1 = 2.4048... is the first zero of the Bessel
function of order zero, and A is the area of the mem-
brane. Equality is attained in (3) if and only if the
membrane is circular. In other words, among all mem-
branes of given area, the circle has the lowest fun-
damental frequency. This inequality was conjectured
by Lord Rayleigh [14], based on exact calculations
for simple domains, and a variational argument for
near circular domains. In 1918, Courant [5] proved
the weaker result that among all membranes of the
same perimeter L, the circular one yields the least
lowest, eigenvalue, i.e.,
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with equality if and only if the membrane is circular.
Rayleigh’s conjecture was proven independently by
Faber [6] and Krahn [7]. The corresponding isoperi-
metric inequality in dimension n,

1 2/n
M () > (@> Co/"nj2-1.0, (5)
was proven by Krahn [8]. In (5), j,,1 is the first pos-
itive zero of the Bessel function J,, || is the vol-
ume of the domain and C,, = #*/2/T'(n/2 + 1) is the

volume of the n—dimensional unit ball. Equality is
attained in (5) if and only if Q is a ball.

The proof of the Rayleigh—Faber—Krahn inequality
rests upon two facts: a variational characterization
for the lowest Dirichlet eigenvalue and the properties
of symmetric decreasing rearrangements of functions.
The variational characterization of the lowest eigen-
value is given by

2
A(Q) = inf M (6)

weHL(Q)  [q u?dx
Concerning decreasing rearrangements, let 2 be a
measurable subset of R"™, then the symmetrized do-
main 2% is a ball with the same measure as Q. If u is a
real valued mesaurable function defined on a bounded
domain Q C R”, its spherical decreasing rearrange-
ment u* is a function defined on the ball Q* centered
at the origin and having the same measure as (2, such
that u* depends only on distance from the origin, is
decreasing away from the origin and is equimeasur-
able with u. We refer to [13, 18, 4] for properties of
rearrangements of functions. Since the function v and
its spherical decreasing rearrangement are equimea-
surable, their L? norms are the same. What Faber
and Krahn actually proved is that the L2 norm of
the gradient of a function is decreased under rear-
rangements (see [18] for details, and also [9] for a
different approach to this fact). The fact that the
L? norm of the gradient of a function decreases un-
der rearrangements, combined with the variational
characterization (6) immediately gives the Rayleigh—
Faber—Krahn inequality.

There are several isoperimetric inequalities for the
lowest eigenvalue of boundary value problems, similar
to the Rayleigh—-Faber—Krahn inequality. We survey
a few of them in the sequel. The lowest non trivial
Neumann eigenvalue also satisfies an isoperimetric
inequality. Let 0 = () < p2(Q) < p3(Q) < ...
be the Neumann eigenvalues of the Laplacian in
Q2 C R e,
in Q,

—Au = pu (7
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If n = 2, Szegd [17] proved

2
mp
p2(€2) < 71; (9)
where p; = 1.8412. .., with equality if and only if Q2
is a circle. The corresponding result for dimension n,

1 2/n .
() < (ﬁ) C2mp2 L, (10)

was proven by Weinberger [19], with equality if and
only if Q is a ball. Here C,, is the volume of the unit
ball in dimension n. In (9) and (10), p,,1 denotes
the first positive zero of the derivative of the Bessel
function J,,. For n = 2 Weinberger [19] also proved

1 N 1
p2(Q) - pz()

with equality if and only if Q is a circle.

There is also an analog of the Rayleigh-Faber—
Krahn inequality for domains in spaces of con-
stant curvature [15]. The optimal Rayleigh—Faber—
Krahn inequalities for domains in S™ was proven by
Sperner [16].

In his book, The Theory of Sound, Lord Rayleigh
also conjectured an isoperimetric inequality for the
lowest eigenvalue, Ay, of the clamped plate. The
eigenvalue problem for the clamped plate is given by
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A2u1 = A1u1 in Q

with

u; = @ =0 in the boundary of ().
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Here Q is a bounded open subset of R?. Rayleigh’s
conjecture for the clamped plate reads

AL(Q) > Ay(Q), (12)
where Q* is a ball of the same area as 2. Rayleigh’s
conjecture was proven by N. Nadirashvili [12]. Equal-
ity is attained in (12) if and only if Q is a circle.
For dimension 3, the corresponding isoperimetric in-
equality was proven by Ashbaugh and Benguria [2].

To prove the analogous result for dimensions 4 and
higher is still an open problem (see [3] however).
Back in the membrane problem, if we go beyond
the lowest eigenvalue, there are several isoperimetric
inequalities as well as a number of open problems.
The simplest combination Ay/A1(£2) satisfies the fol-
lowing inequality [1]
A2(2) < 3721/2,1
M) ~

. , (13)
-7721/271,1

in n dimensions, where equality is obtained if and
only if Q is a ball. Stability results for both, the
Rayleygh—Faber—Krahn inequality (3), (4), and in-
equality (13) have been obtained by Melas [11] (in
simple words stability means that if €2 is convex and
the appropriate left side on either (3), (4) or (13) is
not too different from its corresponding isoperimetric
value, then ) is approximately a ball).
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