
RAYLEIGH{FABER{KRAHN INEQUAL-

ITY { Inequality concerning the lowest eigenvalue of

the Laplacian, with Dirichlet boundary condition, on

a bounded domain in Rn (n � 2).

Let 0 < �1(
) < �2(
) � �3(
) � : : : be the

Dirichlet eigenvalues of the Laplacian in 
 � Rn,

i.e.,

��u = �u in 
; (1)

u = 0 on the boundary of 
: (2)

Here � is the Laplace operator, 
 an open bounded

subset of Rn (n � 2). If n = 2, the Dirichlet eigen-

values are proportional to the square of the eigenfre-

quencies of an elastic, homogeneous, vibrating mem-

brane with �xed boundary.

The Rayleigh{Faber{Krahn inequality for the

membrane (i.e., n = 2) states that

�1 �
�j

2
0;1

A
; (3)

where j0;1 = 2:4048 : : : is the �rst zero of the Bessel

function of order zero, and A is the area of the mem-

brane. Equality is attained in (3) if and only if the

membrane is circular. In other words, among all mem-

branes of given area, the circle has the lowest fun-

damental frequency. This inequality was conjectured

by Lord Rayleigh [14], based on exact calculations

for simple domains, and a variational argument for

near circular domains. In 1918, Courant [5] proved

the weaker result that among all membranes of the

same perimeter L, the circular one yields the least

lowest eigenvalue, i.e.,

�1 �
4�2j20;1

L2
; (4)

with equality if and only if the membrane is circular.

Rayleigh's conjecture was proven independently by

Faber [6] and Krahn [7]. The corresponding isoperi-

metric inequality in dimension n,

�1(
) �

�
1

j
j

�2=n

C
2=n
n

jn=2�1;1; (5)

was proven by Krahn [8]. In (5), jm;1 is the �rst pos-

itive zero of the Bessel function Jm, j
j is the vol-

ume of the domain and Cn = �
n=2

=�(n=2+ 1) is the

volume of the n{dimensional unit ball. Equality is

attained in (5) if and only if 
 is a ball.

The proof of the Rayleigh{Faber{Krahn inequality

rests upon two facts: a variational characterization

for the lowest Dirichlet eigenvalue and the properties

of symmetric decreasing rearrangements of functions.

The variational characterization of the lowest eigen-

value is given by

�1(
) = inf
u2H1

0
(
)

R


(ru)2 dxR


u2 dx

: (6)

Concerning decreasing rearrangements, let 
 be a

measurable subset of Rn, then the symmetrized do-

main 
� is a ball with the same measure as 
. If u is a

real valued mesaurable function de�ned on a bounded

domain 
 � Rn, its spherical decreasing rearrange-

ment u? is a function de�ned on the ball 
� centered

at the origin and having the same measure as 
, such

that u? depends only on distance from the origin, is

decreasing away from the origin and is equimeasur-

able with u. We refer to [13, 18, 4] for properties of

rearrangements of functions. Since the function u and

its spherical decreasing rearrangement are equimea-

surable, their L
2 norms are the same. What Faber

and Krahn actually proved is that the L
2 norm of

the gradient of a function is decreased under rear-

rangements (see [18] for details, and also [9] for a

di�erent approach to this fact). The fact that the

L
2 norm of the gradient of a function decreases un-

der rearrangements, combined with the variational

characterization (6) immediately gives the Rayleigh{

Faber{Krahn inequality.

There are several isoperimetric inequalities for the

lowest eigenvalue of boundary value problems, similar

to the Rayleigh{Faber{Krahn inequality. We survey

a few of them in the sequel. The lowest non trivial

Neumann eigenvalue also satis�es an isoperimetric

inequality. Let 0 = �1(
) < �2(
) � �3(
) � : : :

be the Neumann eigenvalues of the Laplacian in


 � Rn, i.e.,

��u = �u in 
; (7)

@u

@n
= 0 on the boundary of 
: (8)

1



If n = 2, Szeg�o [17] proved

�2(
) �
�p

2
1

A
; (9)

where p1 = 1:8412 : : :, with equality if and only if 


is a circle. The corresponding result for dimension n,

�2(
) �

�
1

j
j

�2=n

C
2=n
n p

2
n=2;1; (10)

was proven by Weinberger [19], with equality if and

only if 
 is a ball. Here Cn is the volume of the unit

ball in dimension n. In (9) and (10), pm;1 denotes

the �rst positive zero of the derivative of the Bessel

function Jm. For n = 2 Weinberger [19] also proved

1

�2(
)
+

1

�3(
)
�

2A

�p21

; (11)

with equality if and only if 
 is a circle.

There is also an analog of the Rayleigh{Faber{

Krahn inequality for domains in spaces of con-

stant curvature [15]. The optimal Rayleigh{Faber{

Krahn inequalities for domains in Sn was proven by

Sperner [16].

In his book, The Theory of Sound, Lord Rayleigh

also conjectured an isoperimetric inequality for the

lowest eigenvalue, �1, of the clamped plate. The

eigenvalue problem for the clamped plate is given by

�2
u1 = �1u1 in 


with

u1 =

����@u@n
���� = 0 in the boundary of 
:

Here 
 is a bounded open subset of R2. Rayleigh's

conjecture for the clamped plate reads

�1(
) � �1(

�); (12)

where 
� is a ball of the same area as 
. Rayleigh's

conjecture was proven by N. Nadirashvili [12]. Equal-

ity is attained in (12) if and only if 
 is a circle.

For dimension 3, the corresponding isoperimetric in-

equality was proven by Ashbaugh and Benguria [2].

To prove the analogous result for dimensions 4 and

higher is still an open problem (see [3] however).

Back in the membrane problem, if we go beyond

the lowest eigenvalue, there are several isoperimetric

inequalities as well as a number of open problems.

The simplest combination �2=�1(
) satis�es the fol-

lowing inequality [1]

�2(
)

�1(
)
�

j
2
n=2;1

j2
n=2�1;1

; (13)

in n dimensions, where equality is obtained if and

only if 
 is a ball. Stability results for both, the

Rayleygh{Faber{Krahn inequality (3), (4), and in-

equality (13) have been obtained by Melas [11] (in

simple words stability means that if 
 is convex and

the appropriate left side on either (3), (4) or (13) is

not too di�erent from its corresponding isoperimetric

value, then 
 is approximately a ball).
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