DIRICHLET EIGENVALUE- Consider a
bounded domain 2 C R"™ with a piecewise smooth
boundary 9. A is a Dirichlet eigenvalue of 2 is there
exists a function u € C*(Q)NC°(Q) (Dirichlet eigen-
function) satisfying the following Dirichlet bound-
ary value problem

—Au = Au

in (1)

and

u=0 in 092, (2)

where A is the Laplace operator (ie., A =
S, 0*/0x?). Dirichlet eigenvalues (with n = 2)
were introduced in the study of the vibrations of the
clamped membrane in the XIX century. In fact they
are proportional to the square of the eigenfrequen-
cies of the membrane with fixed boundary. See [9]
for a review and historical remarks. Provided 2 is
bounded and the boundary 0 is sufficiently regu-
lar, the Dirichlet Laplacian has a discrete spectrum
of infinitely many positive eigenvalues with no finite
accumulation point [13]
0 < A() < A2(2) < A3() <. (3)
(A, = 00 as k — 00).
The Dirichlet eigenvalues are characterized by the
max—min principle [4]

Jo(Vu)? dz

Ar = supinf fQ iy

(4)

where the inf is taken over all u € H}(Q) orthogonal
to @1, P2, .., pr—1 € H(Q), and the sup is taken
over all choices of {p;}¥=". For simply connected do-
mains it follows from the max—min principle (4) that
A1(Q) is nondegenerate and the corresponding eigen-
function wu; is positive in the interior of €. For higher
values of k£ the nodal lines of the k—th eigenfunction
divide © into no more than k—1 subregions (nodal do-
mains) (Courant’s nodal line theorem [4]). Along this
subject, notice the proof of Melas [11] of the nodal
line conjecture for plane domains (if © is a bounded,

smooth, convex domain, the nodal line of us always
meets 0Q).

For large values of k, if @ C R"™, Weyl [17, 18]
proved

42 g2/
(Cnl€])2/

where || and C,, = 7"/ /T'(n/2+1) are, respectively,
the volumes of Q) and of the unit ball in R™.

For any plane—covering domain (i.e., a domain that
can be used to tile the plane without gaps, nor over-
laps, allowing rotations, translations, and reflections
of itself), Pélya [14] proved that

)\kZ—k for k=1,2,..., (6)
A

and conjectured the same bound for any bounded

domain in R? (here A is the area of the domain).

Pélya’s conjecture in n dimensions is equivalent to

saying that the Weyl asymptotics of Ag (5) is a lower

bound for A, i.e.,

Ax2k2/n

A > ——————
b= (Cala)?/n

fork=1,2,.... (7

A result analogous to (6) for the Neumann Eigen-
values of tiling domains, with the sign of the equal-
ities reversed, also holds. The best result to date to-

wards the proof of the Pélya conjecture is the bound
[10]

k 23.142/n

1,2,3,..., (8)

proven using the asymptotic behavior of the heat ker-
nel of 2 and the connection between the heat kernel
and the Dirichlet eigenvalues of a domain (see e.g.,
[6] for a review and related results).

Dirichlet eigenvalues are completely characterized
by the geometry of the domain 2. The inverse prob-
lem, i.e., up to what extent the geometry of {2 can be
recovered from the knowledge of {A,}52, was posed
by Kac in [8]. If n = 2, for example, and 92 is smooth
(in particular 0Q does not have corners) the distri-
bution function behaves as
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as t — 0, where A is the area, L the perimeter, and
r the number of holes of 2, so at least these fea-
tures of the domain can be recovered from knowledge
of all the eigenvalues (the first term in (9) is just a
consequence of Weyl’s asymptotics). However, com-
plete recovery of the geometry is impossible, as was
later shown by Gordon, Web and Wolpert, who con-
structed two isospectral domains in R? with different
geometries [7].

The inverse of the square root of a Dirichlet eigen-
value is a length that may be compared with other
characteristic lengths of the domain 2. A typical
such comparison is the Rayleigh—Faber—Krahn
inequality. Another inequality along these lines is
the following: if Q is a simply connected domain in
R? and rq the radius of the largest disc contained in
2, there is a universal constant a, such that

M) > —- (10)

{5310| S

(the best, not yet optimal, constant to date in (10)
is @ = 0.6197; see [2] for details and historical facts).
For other isoperimetric inequalities see e.g., [1, 12,
15]. In the same vein, one can also compare Dirichlet
and Neumann eigenvalues (see the entry Neumann
Eigenvalue).

Because of the connection between Potential The-
ory and Brownian Motion, it is possible to use proba-
bilistic methods to find properties of Dirichlet Eigen-
values. One such property was found by Brascamp
and Lieb [3] for A;: if Q; and Q5 are domains in R™,
and we set Q; = tQ; + (1 — ¢)Qa, then A\ (Q) <
tAL(Q1) + (1 —1)A2(Q2) for all t € (0,1). Another ex-
ample of the use of probabilistic methods is the proof
of (10) by Banuelos and Carroll [2].

To conclude, note that it is possible to define
Dirichlet Eigenvalues for much more general domains
in R™ (seee.g., [16], p. 263), and also for the Laplace—
Beltrami operator defined on domains in Riemannian
manifolds (see e.g., [5]).
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