NEUMANN EIGENVALUE- Consider a
bounded domain 2 C R"™ with a piecewise smooth
boundary 9. p is a Neumann eigenvalue of € is there
exists a function u € C2(Q)NC° () (Neumann eigen-
function) satisfying the following Neumann bound-
ary value problem

—Au = pu in Q (1)
and 5
U .
s 0 in 092, (2)

where A is the Laplace operator (ie., A =
S, 0*/0x}). For more general definitions see [8].
Neumann eigenvalues (with n = 2) appear naturally
when considering the vibrations of a free membrane
In fact, for n = 2, the nonzero Neumann eigenvalues
are proportional to the square of the eigenfrequencies
of the membrane with free boundary. Provided {2 is
bounded and the boundary 00 is sufficiently regu-
lar, the Neumann Laplacian has a discrete spectrum
of infinitely many nonnegative eigenvalues with no
finite accumulation point

0=p(92) < p2(Q) < p3(R2) <

(3)

(ur, = 00 as k — 00). The Neumann eigenvalues are
characterized by the max—min principle [3]

Jo(Vu)? dz

, = inf
223 Sup 11 fQUZ dx )

(4)

where the inf is taken over all u € H!(Q) orthogonal
to 01,02, ., 0k_1 € HY(Q), and the sup is taken
over all the choices of {(pi}f;f. For simply connected
domains the first eigenfunction u;, corresponding to
the eigenvalue p; = 0 is constant throughout the do-
main. All the other eigenvalues are positive. While
Dirichlet Eigenvalues satisfy stringent constraints
(e. g., A2/ A1 cannot exceed 2.539. .. for any bounded
domain in R?, [1]), no such constraints exist for
Neumann Eigenvalues, other than the fact that they
are nonnegative. In fact, given any finite sequence
{1 =0 < ps < pg < ... < un} there is an open,
bounded, smooth, simply connected domain of R?
having this sequence as the first N Neumann Eigen-
values of the Laplacian on that domain [2]. Though

it is obvious from the variational characterization of
both Dirichlet Eigenvalues and Neumann Eigen-
values (Eqn. (4)) that pg < A, Friedlander [4] proved
the stronger result,

k=1,2,... (5)

How far is the first nontrivial Neumann eigenvalue
from zero for a convex domain in R? is given through
the optimal inequality [6]

Mitr1 < A,

(6)

where d is the diameter of the domain. There are
many more isoperimetric inequalities for Neumann
Eigenvalues (see the article on the Rayleigh-Faber-
Krahn Inequality).

For large values of k, Weyl poved [9].

47r2k2/n
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where || and C,, = 7"/ /T'(n/2+1) are, respectively,
the volumes of Q) and of the unit ball in R™.

For any plane—covering domain (i.e., a domain that
can be used to tile the plane without gaps, nor over-
laps, allowing rotations, translations, and reflections
of itself), Pélya [7] proved that

4k

/,Lk+1§7 fork:0,1,2,...,

(8)
and conjectured the same bound for any bounded
domain in R?. This is equivalent to saying that the
Weyl asymptotics of py is an upper bound for puy.
The analogous conjecture in dimension n is

47r2k2/n

/,Lk.l,_lSW fOI'kZO,l,Q,....

(9)

The most significant result towards the proof of

Pélya’s conjecture for Neumann Eigenvalues is the

result by Kroger [5]

zk: o 42 g2/
M=z (cLapn

i=1

for k=1,2,.... (10)
A proof of Pélya’s conjecture for both Dirichlet and

Neumann eigenvalues would imply Friedlander’s re-
sult (5).
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