
NEUMANN EIGENVALUE{ Consider a

bounded domain 
 � Rn
with a piecewise smooth

boundary @
. � is a Neumann eigenvalue of 
 is there

exists a function u 2 C2(
)\C0(�
) (Neumann eigen-

function) satisfying the followingNeumann bound-

ary value problem

��u = �u in 
 (1)

and
@u

@n
= 0 in @
; (2)

where � is the Laplace operator (i.e., � =P
n

i=1
@2=@x2

i
). For more general de�nitions see [8].

Neumann eigenvalues (with n = 2) appear naturally

when considering the vibrations of a free membrane

In fact, for n = 2, the nonzero Neumann eigenvalues

are proportional to the square of the eigenfrequencies

of the membrane with free boundary. Provided 
 is

bounded and the boundary @
 is suÆciently regu-

lar, the Neumann Laplacian has a discrete spectrum

of in�nitely many nonnegative eigenvalues with no

�nite accumulation point

0 = �1(
) � �2(
) � �3(
) � : : : (3)

(�k ! 1 as k !1). The Neumann eigenvalues are

characterized by the max{min principle [3]

�k = sup inf

R


(ru)2 dxR


u2 dx

; (4)

where the inf is taken over all u 2 H1(
) orthogonal

to '1; '2; : : : ; 'k�1 2 H1(
), and the sup is taken

over all the choices of f'ig
k�1

i=1
. For simply connected

domains the �rst eigenfunction u1, corresponding to

the eigenvalue �1 = 0 is constant throughout the do-

main. All the other eigenvalues are positive. While

Dirichlet Eigenvalues satisfy stringent constraints

(e. g., �2=�1 cannot exceed 2:539 : : : for any bounded
domain in R2, [1]), no such constraints exist for

Neumann Eigenvalues, other than the fact that they

are nonnegative. In fact, given any �nite sequence

f�1 = 0 < �2 < �3 < : : : < �Ng there is an open,

bounded, smooth, simply connected domain of R2

having this sequence as the �rst N Neumann Eigen-

values of the Laplacian on that domain [2]. Though

it is obvious from the variational characterization of

both Dirichlet Eigenvalues and Neumann Eigen-

values (Eqn. (4)) that �k � �k , Friedlander [4] proved
the stronger result,

�k+1 � �k; k = 1; 2; : : : (5)

How far is the �rst nontrivial Neumann eigenvalue

from zero for a convex domain in R2 is given through

the optimal inequality [6]

�1 �
�2

d2
; (6)

where d is the diameter of the domain. There are

many more isoperimetric inequalities for Neumann

Eigenvalues (see the article on the Rayleigh-Faber-

Krahn Inequality).

For large values of k, Weyl poved [9].

�k+1 �
4�2k2=n

(Cnj
j)
2=n

; (7)

where j
j and Cn = �n=2=�(n=2+1) are, respectively,
the volumes of 
 and of the unit ball in Rn.

For any plane{covering domain (i.e., a domain that

can be used to tile the plane without gaps, nor over-

laps, allowing rotations, translations, and reections

of itself), P�olya [7] proved that

�k+1 �
4�k

A
for k = 0; 1; 2; : : :; (8)

and conjectured the same bound for any bounded

domain in R2. This is equivalent to saying that the

Weyl asymptotics of �k is an upper bound for �k.
The analogous conjecture in dimension n is

�k+1 �
4�2k2=n

(Cnj
j)
2=n

for k = 0; 1; 2; : : :: (9)

The most signi�cant result towards the proof of

P�olya's conjecture for Neumann Eigenvalues is the

result by Kr�oger [5]

kX

i=1

�i �
n

n+ 2

4�2k2=n

(Cnj
j)
2=n

for k = 1; 2; : : :: (10)

A proof of P�olya's conjecture for both Dirichlet and

Neumann eigenvalues would imply Friedlander's re-

sult (5).
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