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Abstract. In this paper we study existence and nonexistence of solutions to

the Br�ezis-Nirenberg problem for di�erent values of � in geodesic spheres on

S3. The picture di�ers considerably from the one in the Euclidean space. It is

shown that large spheres containing the hemisphere have two di�erent type of

radial solutions for negative values of �. Numerical results indicate that for �

very small the solutions have a maximum near the boundary, whereas for larger

values of � the maximum is at the origin. The techniques used are: Pohozaev

type identities, concentration-compactness lemma and numerical methods.

1. Introduction

Let D be a geodesic ball on S3. Consider the problem

��S3u = u5 + �u on D;(1)

with u � 0 and Dirichlet boundary conditions, i.e.,

u = 0 on @D:(2)

Here �S3 is the Laplace-Beltrami operator on S
3, and 5 is the corresponding critical

Sobolev exponent. We are interested in determining the range of values of � for

which there exists a positive solution of (1) and (2). The equivalent problem for

a ball in Euclidean space was solved a long time ago by Br�ezis and Nirenberg [6].

In Euclidean space there is a vast literature on many di�erent extensions of the

problem considered by Br�ezis and Nirenberg (see, e.g., [15], Chapter 3; see also

[4] and the references therein). It follows immediatly from the maximum principle

that no positive solutions exist if � � �1 where �1 is the �rst eigenvalue of the

Laplace-Beltrami operator with Dirichlet boundary conditions.

Our main result is the following theorem.

Theorem 1. Let D � S
3 be a ball whose geodesic radius will be denoted by �1.

Then the following statements are true (cf. Fig.2).

i) If

�2 � 4�21
4�21

< � < �1 =
�2 � �21
�21

;(3)

there is a unique positive solution to (1) and (2).

ii) If D is contained in the hemisphere, i.e. if �1 � �=2, and if � <
�
2�4�2

1

4�2
1

, there

is no nontrivial solution to (1) and (2).
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2 C. BANDLE AND R. BENGURIA

iii) If D contains the hemisphere, there exists a function � : (�
2
; �)! (� 3

4
;�1),

�(t) ! � 3
4
as t ! � such that for �(�1) < � <

�
2�4�2

1

4�2
1

there is no nontrivial

solution to (1) and (2). Numerical computations indicate that there are solutions

if � < �(�1).

Remarks 1. i) In particular for a hemisphere of S3 there is a solution of (1) and

(2), if and only if 0 < � < 3.

ii) On the other hand, in the limit as the geodesic radius of D, �1 goes to zero,

one recovers the Br�ezis{Nirenberg result, i.e., there is a positive solution if and only

if �1=4 < � < �1, where �1 is the �rst Dirichlet eigenvalue of the ball.

iii) Except for � = 0 and � = �=2 where no solution exist [2], it is not known

whether or not for the borderline cases � =
�
2�4�2

1

4�2
1

and � = �(�1) there exist a

solution.

iv) The picture for the geodesic balls contained in a hemisphere is not surprising.

It was expected after the recent results of Bandle and Peletier [2] on best critical

constants for the Sobolev embeddings in S3 in the case � = 0.

v) An interesting open problem is to prove the existence of solutions in the range

� < �(�1). Numerical calculations show that in contrast to the solutions in the

range
�
2�4�2

1

4�2
1

< � <
�
2��2

1

�2
1

their maximum is not at the origin (cf. Fig. 3).

They become singular at the boundary as � tends to �(�1). Arguments based on

symmetrization [1] show that those solutions cannot be minimizers of the associated

energy functional Sp;� de�ned in the next section.

In Section 2, we will discuss the existence of nontrivial positive solutions, while in

Section 3 we will use an appropriately modi�ed Pohozaev identity to show nonex-

istence of positive solutions. In Section 4 we investigate numerically the region

� < �3=4 for balls beyond the hemisphere. A boundary value problem relevant to

the proof of the existence of positive solutions is briey discussed in the Appendix.

2. Existence of positive solutions

It is well{known that for any domainD � R
3 ,W

1;2
0 (D) is continuously embedded

into L6(D). This means that there exists a positive number S1(D) given by

S1(D) = inf
v

Z
D

jrvj2 dx; where v 2 W 1;2
0 (D) and

R
D
v6 dx = 1.(4)

S1(D) is called the best Sobolev constant. For domains D 6= R3 the minimum is

never attained. Every minimizing sequence contains a subsequence which concen-

trates. The constant S1(D) is independent of the domain and has the value

S� = 3(
�

2
)4=3:(5)

The situation is di�erent on S3 = fx 2 R4
�� jxj = 1g. If we map S3 stereographically

onto R3 , a domain D0 � S
3 is mapped onto a domain D � R

3 . Since the transfor-

mation is conformal, the line element of S3 is proportional to the line element of

the Euclidean space, i.e.,

ds = p(x) dx p(x) �
2

1 + jxj2
:(6)
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The best Sobolev constant for D0 is then given by

Sp(D) = inf
v

Z
D

jrvj2 p(x) dx; where v 2 W
1;2
0 (D) and

R
D
v6p3 dx = 1.(7)

A geodesic ball in S3 and centered at the north pole is mapped onto a ball BR =

fx 2 R
3
�� jxj < Rg (cf. Fig. 1). In particular B1 is the image of the hemisphere

under the stereographic projection. Recently Bandle and Peletier [2] proved that

Sp(BR) is never attained for R � 1 (in fact, Sp(BR) = S�, if R � 1 and every

minimizing sequence has a subsequence which concentrates at a single point). On

the other hand, if R > 1 there exists a unique minimizer and Sp(BR) < S�.

θ

θ/2

r

1

x’

x
O

Figure 1. Relation bewteen stereographic projection and geo-

desic coordinates

As in the Euclidean case [6], set

Sp;�(D) = inff
Z
D

jrvj2 p(x) dx � �

Z
D

v2 p3 dx
�� v 2 Xpg(8)

with

Xp = fv 2 W
1;2
0 (D)

�� Z
D

v6p3 dx = 1g:(9)

Clearly Sp;0(D) = S�.

Lemma 1. Let D0 be a geodesic ball centered at the north pole of S3, and let D be

its stereographic projection (from the south pole) onto R3 . Let �1 be the geodesic

radius of D0. Then , for all � > (�2 � 4�21)=4�
2
1, we have

Sp;�(D) < S�:(10)

Proof. We will estimate the quotient

Q�;p(v) �
R
D
jrvj2 p(x) dx � �

R
D
v2 p3 dx�R

D
v6p3 dx

�1=3 ;(11)

for the family of functions

v�(r) =
'(r)

(�+ r2)1=2
;(12)



4 C. BANDLE AND R. BENGURIA

r = jxj and � > 0. Here, '(r) is a �xed smooth function satisfying '(0) = 1,

'0(0) = 0, '(R) = 0, which will be chosen appropriately later. We will compute

each of the three terms appearing in the quotient (11), to leading order in �, as �

goes to zero. We start withZ
D

v�
2p3 dx = 4�

Z
R

0

'(r)2

(�+ r2)
p(r)3r2 dr = 4�

Z
R

0

'(r)2p(r)3 dr � I1;(13)

where the remainder term is given by

I1 = 4�

Z
R

0

'(r)2p(r)3
�

�+ r2
dr:(14)

Making the change of variables r = �1=2s in (14), inserting the expresion for p(r)

given by (6) and using the smoothness of ', we get

I1 = 4�

Z
R=�

1=2

0

'(�1=2s)2

(1 + s2)

8

(1 + �s2)3
�1=2 ds = O(�1=2);(15)

as � goes to zero. Hence, from (13) and (15), we haveZ
D

v�
2p3 dx = 4�

Z
R

0

'(r)2p(r)3 dr +O(�1=2):(16)

Next, considerZ
D

v�
6p3 dx = 4�

Z R

0

'(r)6

(�+ r2)3
p(r)3r2 dr = I2 + I3 + I4;(17)

with

I2 � 4�

Z
R

0

'(r)6 � 1

(�+ r2)3
p(r)3r2 dr;(18)

I3 � 4�

Z
R

0

p3 � 8

(�+ r2)3
r2 dr;(19)

and,

I4 � 4�

Z R

0

8

(�+ r2)3
r2 dr:(20)

Since '(0) = 1 and '0(0) = 0 and p3 � 8, we have

jI2j � C

Z R

0

r4

(�+ r2)3
dr = O(��1=2):(21)

Also, 8� p3 = 8(r6 +3r4+3r2)=(1+ r2)3, and 0 � r � R. Thus, 8� p(r)3 � C1r
2,

where C1 is a constant depending on R. Using this in (19) we get,

jI3j � C1

Z
R

0

r4

(�+ r2)3
dr = O(��1=2):(22)

Whereas, making the same change of variables as before, r = �1=2s, we get from

(20)

I4 = 4�

Z R=�
1=2

0

8

�3=2
s2

(1 + s2)3
ds =

32�

�3=2

Z 1

0

s2 ds

(1 + s2)3
+O(1) =

2�2

�3=2
+O(1):

(23)
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Hence, from (17), (21), (22), and (23), we concludeZ
D

v�
6p3 dx =

2�2

�3=2
+O(��1=2):(24)

Finally, we have to considerZ
D

jrv�j2p dx = 4�

Z
R

0

�
@v�

@r

�2

p(r)r2 dr(25)

When we use the expression (12) for v�(r) in the previous equation, and after

integration by parts, we can decomposeZ
D

jrv�j2p dx = I5 + I6 + I7;(26)

where

I5 � 12�

Z
R

0

'(r)2
�r2

(�+ r2)3
p(r) dr;(27)

I6 � 4�

Z
R

0

'0(r)2

�+ r2
p(r)r2 dr;(28)

and,

I7 � 4�

Z
R

0

'(r)2
r3p0(r)

(�+ r2)3
dr:(29)

After making the standard stretching of variables, i.e., r = �1=2s, using the smooth-

ness of '(r) together with the fact that '0(0) = 0, we conclude

I6 = 4�

Z
R

0

p'0
2
dr +O(�):(30)

Using the same argument, and the fact that p0 = �r p2, we also have

I7 = �16�
Z R

0

'2(r)

(1 + r2)2
dr +O(�) = �4�

Z R

0

p(r)2'(r)2 dr +O(�):(31)

Finally, using the stretching of variables, the smoothness of both p(r) and '(r),

and the fact that '(0) = 1 and p(0) = 2, we obtain,

I5 =
24�

�1=2

Z 1

0

s2 ds

(1 + s2)3
+O(�1=2) =

3�2

2�1=2
+O(�1=2):(32)

Therefore, from (26), (30), (31), and (32) we obtainZ
D

rv�2p dx =
3�2

2�1=2
+ 4�

Z
R

0

p'0
2
dr � 4�

Z
R

0

p2'2 dr +O(�1=2):(33)

Using (16), ( 24), and (33) in the quotient (11), with v = v�, we get,

Q�;p(v�) = S� +
�1=2

(2�2)1=3
F ('; �) +O(�);(34)

as � goes to zero. Here,

F ('; �) � 4�

Z R

0

p'0
2
dr � 4�

Z R

0

p2'2 dr � 4��

Z R

0

p3'2 dr;(35)
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and S� is given by (5). Now choose '(r) = '1(r) � (1 + r2) cos(� arctan r=�1).

This function satis�es '1(0) = 1, '01(0) = 0 and '1(R) = 0, since tan �1=2 = R.

Because of the Lemma 3 and the Remark in the Appendix, we have

F ('1; �) = 4�(�1 � �)

Z
R

0

p3'21 dr < 0(36)

if � > �1(�1), where

�1(�1) �
�2 � 4�21

4�21
:

Thus, if � > �1(�1), Q�;p(v�) < S�.

This lemma together with the concentration-compactness alternative (cf. for in-

stance [5], [1]) implies that Sp;� is attained and that the minimizer solves (1),(2).

This proves the existence of a solution in Theorem 1 (i). In order to prove the

uniqueness we use a result of Kwong and Li [11] where the case4u+u5+q(r)u = 0

in B1, u = 0 on @B1 has been studied. It turns out [Theorem 2] that, if there exists

a number r0 2 (0; 1] such rq(r) is nondecreasing in (0; r0) and nonincreasing in

(r0; 1) then there is at most one solution. As observed in [1] the Euler-Lagrange

equation associated to Sp;�(D) can always be brought into such a form. Indeed if u

is a minimizer then � =
p
pu satis�es 4�+ 3+4�

(1+r2)2
�+ Sp;�(D)�5 = 0 in D, � = 0

on @D. If 3 + 4� > 0 then the theorem of Kwong and Li applies and establishes

the second part of Theorem 1 (i).

Remarks 2. i) The lower bound for � is related to the Green's function G of

the operator 4S3 + � with Dirichlet boundary conditions. If the singularity is in

the center of the geodesic ball, it depends only on � and has the form G(�; 0) =

const:
sin(

p
1+�(�1��))
sin �

. It can be split into a singular and a regular part G(�; 0) =

const:(
sin(�1

p
1+�)

sin �
+ h(�)) where h(�) = � 1

sin �

�
cos

p
1+�(2�1��)

2
sin �

p
1+�
2

�
. If � >

�
2�4�2

1

4�2
1

then h(0) > 0. This is in accordance with a result of Schoen [14].

ii) The existence of solutions for arbitrary domains 
 � S
3 was studied in [1]. It

turns out that there is an interval I = (�1(
); �1(
)) such that for � 2 I Problem

(1),(2) in 
 has a solution. If B0 is the outer and Bi the inner ball of 
 a mono-

tonicity argument yields �1(B0) < �1(
) < �1(Bi) and �1(B0) < �1(
) < �1(Bi).

By means of symmetrization the lower bounds can be improved. Indeed if 
� de-

notes the geodesic ball of the same Riemannian volume as 
 then �1(

�) < �1(
)

and �1(

�) < �1(
).

3. Nonexistence of solutions

Consider the equation

��S3u = u5 + �u(37)

on a geodesic ball of radius �1, with u � 0, and Dirichlet boundary conditions.

Then we have the following nonexistence result.

Lemma 2. Assume � � �
2�4�2

1

4�2
1

:

i) If �1 � �=2 then, there is no solution of (37).

ii) If �1 � �=2 and if in addition � � � 3
4
then, there is no solution of (37).
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Proof. This time the proof is simpler if we use geodesic coordinates rather than the

stereographic projection used in the proof of Lemma 1. For that purpose, let us

choose the north pole of S3 as the center of the geodesic ball. Given a point on S3,

let � be the azimuthal angle of that point (i.e., if we consider rays coming from the

center of the ball to the north pole and to the given point, respectively, � is the

angle between those two rays, cf. Fig. 1). By a result of Padilla [12] (extending the

classical result of Gidas, Ni, and Nirenberg [9] to domains on manifolds of constant

curvature), a solution u to (37) is symmetric, i.e., it only depends on the azimuthal

angle �. Writing u(x) = u(�), where � is the azimuthal angle of x, (37) can be

written as

�u00 � 2 cot � u0 = u5 + �u;(38)

with u(0) �nite, u0(0) = 0 and u(�1) = 0. The proof of this lemma is a Pohozaev

type argument. We �rst multiply (38) by sin2 � g(�)u0(�) and integrate the result

in � from 0 to �1. Here, g(�) is a smooth function satisfying g(0) = 0, g(�) > 0

for � 2 (0; �1), and otherwise arbitrary. Integrating by parts, using the boundary

conditions on u and g(0) = 0, we obtainZ
�1

0

(u0)2h(�) d� �
1

2
u0
2
(�1)g(�1) sin

2(�1)

= �
Z �1

0

(2 sin � cos � g(�) + sin2 � g0(�))(
1

6
u6 +

1

2
�u2) d�;

(39)

where h(�) = (1=2)g0(�) sin2 �� sin � cos �g(�). Then we multiply (38) by h(�) just

de�ned. Thus we obtain,Z �1

0

u0
2
h(�) d� �

Z �1

0

u2
�
1

4
g000 + g0

�
sin2 � d�

=

Z �1

0

(u6 + �u2)h(�) d�:

(40)

Substracting (40) from (39) we getZ �1

0

u2 sin2 �

�
1

4
g000 + g0(1 + �)

�

=
1

2
u0
2
(�1)g(�1) sin

2 �1

+
2

3

Z
�1

0

u6 sin � (cos � g(�)� sin � g0(�)) d�:

(41)

>From this point on we have to distinguish two cases: i) � < �3=4, �1 � �=2 and

ii) � � �3=4.
Case i): � < �3=4, �1 � �=2.

For these values of � choose g(�) � sin �. Then, cos �g(�) � sin �g0(�) � 0.

Moreover,

1

4
g000(�) + (1 + �)g0(�) =

1

4
cos �(3 + 4�) < 0;(42)

for 0 � � < �1 � �=2. Since g(�1) � 0, from (41) and (42) we get a contradiction.

Therefore, there are no solutions of (38) in this case.

Case ii): � � �3=4.
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For these values of �, ! �
p
4(1 + �) > 0. Now choose g(�) = sin(!�), so that

1

4
g000(�) + (1 + �)g0(�) � 0:(43)

Clearly, g(�) > 0 if 0 < � � �1 and ! is such that the product !�1 is less than �,

i.e., if � < (�2 � 4�21)=4�
2
1. Also,

F (�) � cos � g(�)� sin � g0(�) = cos � sin(!�)� ! sin � cos(!�) > 0;(44)

for 0 < � < �1, since F (0) = 0 and F 0(�) = (3 + 4�) sin � sin(!�) > 0, whenever

0 < � < �1, !�1 < � and 3 + 4� > 0. Using (43) and (44) in (41), noticing that

g(�1) > 0, we get a contradiction again, and this lemma is proved.

On the other hand, we also have the rather standard nonexistence result.

Lemma 3. If

� � �1(�1) �
�2 � �21
�21

;(45)

with 0 < �1 � �, then, there are no positive solutions of (37).

Remarks 3. i) Here �1(�1) is the lowest Dirichlet eigenvalue of a geodesic cap

with geodesic radius �1. The corresponding eigenfunction is given by u1(�) =

sin(��=�1)= sin(�), which is positive inside the cap and symmetric.

ii) The spectrum of the Laplace{Beltrami operator of geodesic caps on the n

dimensional sphere has been considered by several people (see, e.g., [8, 3, 7, 13]).

Proof. Since the positive solutions of (37) are symmetric, we can just consider

(38). Multiplying (38) by u1 sin
2(�), integrating by parts, and using the boundary

conditions on u and u1 we get

(�� �1)

Z �1

0

uu1 sin
2 � d� +

Z �1

0

u5 u1 sin
2 � d� = 0;(46)

which proves the lemma.

4. Beyond the hemisphere with � < �3=4

In the previous sections, we have determined the existence and nonexistence of

solutions for (1) and (2) on a geodesic cap in two cases: i) for �1 � �=2 and all real

values of �, and ii) for �1 > �=2, and � � �3=4.
An interesting phenomena occurs when the geodesic cap is larger than the hemi-

sphere. In fact, we have found numerical evidence that for those caps, not only

we have the solutions embodied in our Theorem 1 (i), but also for a given value

of �1 > �=2, there are positive solutions for all suÆciently negative values of the

parameter �. This is somewhat reminiscent of the analogous problem on an annu-

lus in Euclidean space (see [10]). However, the situation is not completely similar,

because here, for a �xed value of geodesic radius �1 > �=2, there will be a gap

between the values of � for which we have the positive solutions described by The-

orem 1 (i) and the (suÆciently negative) values of � for which these new positive

solutions exist (see Figure 2). There is no such a gap in the classical example of

the annulus in Euclidean space [10].

Before we go into the discussion of the general case, notice that for the full sphere

(i.e., for �1 = �) there is a trivial positive solution for every negative value of �,

namely the constant u(�) � (��)1=4.
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Figure 2. Range of values of � for the existence of positive solutions

For the general case (i.e., for �=2 < �1 < � and � < �3=4), we should also like

to determine the region of these parameters for which there exist positive solutions.

We have partially solved this problem as we will now describe.

Lemma 4 (nonexistence of positive solutions). There is a curve in the (�1; �)- plane,

denoted by � = �(�1) (see Fig. 2), such that if �3=4 � � > �(�1), then there are

no positive solutions of (1), (2).

Proof. We use the identity (41) that we obtained in Section 3. We distinguish three

di�erent (although related) cases.

i) � = �1. We take g(�) = a� � �2, and choose a in such a way that both

g(�) � 0 and cos �g(�)� sin �g0(�) � 0 for � < a. Numerically we �nd a = 3:04238.

Now, since � = �1, g(0) = 0, and g000 � 0, we get a contradiction from (41) if

�1 < 3:04238. Hence there are no positive solutions for � = �1 and �1 < 3:04238.

Thus we set �(3:04238) = �1.
ii) If �3=4 > � > �1. Let w =

p
4(1 + �) and take g(�) = sinw� � a(cosw� � 1),

and as in the previous case we choose a in such a way that it gives the largest

range of values of � for which both, g(�) and cos �g(�)� sin �g0(�) � 0. Denote by

��1(�) this maximal range. Then, for all �1 < ��1(�), since g000=4 + (1 + �)g � 0,

and g(0) = 0, we get a contradiction when using (41), and therefore, there are no

positive solutions when �3=4 > � > �1 and �1 < ��1(�).

iii) If �1 > �. We proceed exactly as in the previous case, but this time we set

w =
p
�4(1 + �) and choose g(�) = sinhw� � a(coshw� � 1). The rest of the

argument is the same as before, which allows us to complete the curve � = �(�1).
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Unfortunately we do not have at the moment and existence theorem for values

of � below the curve �(�1). However, we have performed extensive numerical com-

putations that indicate the existence of positive solutions for values of � below this

curve, and in fact we can get very close to the curve we determined. Just as an

example of our numerical solutions, in Fig. 3, we exhibit a solution for �1 = 2:5,

and � = �7. For this solution u(0) = 0:12425. Notice that the solution is not

decreasing in �. Quite on the contrary it is highly peaked beyond the hemisphere.

For comparison we also shown in Fig. 3 a positive solution with � = �0:1 (with

u(0) = 1:31474), which is decreasing.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

geodesic radius [radians]

u for lambda=-7
 u for lambda=-0.1

theta_1=2.5

Figure 3. Numerical solution for �1 = 2:5, and two di�erent val-

ues of �: � = �0:1 (with u(0) = 1:31474) and � = �7 (with

u(0) = 0:12425.

Before we conclude this section, we would like to point out that at the special

point � = �3=4, where we know that there are no positive solutions for any value of

�1 except at �1 = �, there is an interesting singular solutions satisfying (1), namely

u(�) =
1
p
2

1

(sin �)1=2
:

This may just be a coincidence, however, it might play a role later in the solution

to the existence problem for values of � < �3=4.

5. Appendix

Consider the boundary value problem

�(p'0)0 � p2' = �p3' in (0; R);(47)

with boundary conditions

'0(0) = 0 and '(R) = 0:(48)
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Here, as before,

p(r) =
2

1 + r2
:(49)

Then we have,

Lemma 5. The groundstate of the boundary value problem (47), (48) is given by

'1(r) = (1 + r2) cos(
�

�1
arctan r)(50)

where �1 = 2arctanR. The corresponding eigenvalue is given by

�1 =
�2

4�21
� 1:(51)

Proof. The boundary value problem (47), (48) is de�ned by a regular Sturm{

Liouville operator. It is straightforward to check that '1(r) satis�es (47) and the

boundary conditions (48). Moreover, '1(r) > 0 in (0; R). By the Perron Frobenius

theore, '1 is the ground state.

Remark 1. Since '1 is the groundstate of the Sturm{Liouville operator de�ning

the boundary value problem (47), (48), we haveZ R

0

p(r)'0(r)
2
dr �

Z R

0

p(r)2'(r)2 dr � �1

Z R

0

p(r)3'(r)2 dr(52)

for any smooth function '(r) satisfying the boundary conditions (48). Equality is

attained in (52) if and only if ' = '1.
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