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Overview

This past year has seen three remarkable developments in
the spectral theory of orthogonal and related polynomials.

A complete presentation, with background, of any of them
would require at least four lectures (and in the case of
Yuditskii’s work more like 10 lectures!) so my goal is to give
an overview of these exciting developments.

In the first lecture, I’ll recall the framework of orthogonal
polynomials on the real line (OPRL) and unit circle (OPUC)
and then focus on two related topics: sum rules (specifically
Szegő’s theorem as a sum rule and the Killip-Simon
theorem) and Szegő asymptotics. The last three lectures
will be one each on the new developments.
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OPs

Orthogonal polynomials on the real line (OPRL) and on the
unit circle (OPUC) are particularly useful because the
inverse problems are easy—indeed the inverse problem is the
OP definition as we’ll see.

OPs also enter in many application—both specific
polynomials and the general theory. Indeed, my own interest
came from studying discrete Schrödinger operators on `2(Z)(

Hu
)
n

= un+1 + un−1 + V un

and the realization that when restricted to Z+, one had a
special case of OPRL.
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OPRL basics

µ will be a probability measure on R. We’ll always suppose
that µ has bounded support [a, b] which is not a finite set of
points. (We then say that µ is non-trivial.) This implies
that 1, x, x2, . . . are independent since∫
|P (x)|2 dµ = 0⇒ µ is supported on the zeroes of P .

Apply Gram Schmidt to 1, x, . . . and get monic polynomials

Pj(x) = xj + αj,1x
j−1 + . . .

and orthonormal (ON) polynomials

pj = Pj/‖Pj‖
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More generally we can do the same for any probability
measure of bounded support on C.

One difference from the case of R, the linear combination of
{xj}∞j=0 are dense in L2(R, dµ) by Weierstrass. This may or
may not be true if supp(dµ) 6⊂ R.
If dµ = dθ/2π on ∂D, the span of {zj}∞j=0 is not dense in
L2 (but is only H2). Perhaps, surprisingly, as one can prove
using Szegő’s theorem, there are measures dµ on ∂D for
which they are dense (e.g., µ purely singular).
More significantly, the argument we’ll give for our recursion
relation fails if supp(dµ) 6⊂ R.
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Because < Pj , xPn >=< xPj , Pn > (OPRL only)

= 0 if
j < n− 1, the P ’s obey a three term recurrence relation:
(P−1 ≡ 0); {aj}∞j=1, {bj}∞j=1 : Jacobi recursion

xPN = PN+1 + bN+1PN + a2NPN−1

bN ∈ R, aN = ‖PN‖/‖PN−1‖

These are called Jacobi parameters. This implies
‖PN‖ = aN aN−1 . . . a1 (since ‖P0‖ = 1).

This, in turn, implies pn = Pn/a1 . . . an obeys

xpn = an+1pn+1 + bn+1pn + anpn−1
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We have thus solved the inverse problem, i.e., µ is the
spectral data and {an, bn}∞n=1 are the descriptors of the
object.

In the orthonormal basis, {pn}∞n=0, multiplication by x has
the matrix

J =


b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
...

...
...

...
. . .


called a Jacobi matrix.
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Since

bn =

∫
xp2n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.

Conversely, if supn
(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one finds µ has Jacobi matrix exactly
given by J .



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Favard’s Theorem

Since

bn =

∫
xp2n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.

Conversely, if supn
(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one finds µ has Jacobi matrix exactly
given by J .



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Favard’s Theorem

Since

bn =

∫
xp2n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.

Conversely, if supn
(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one finds µ has Jacobi matrix exactly
given by J .



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Favard’s Theorem

Since

bn =

∫
xp2n−1(x) dµ, an =

∫
xpn−1(x)pn(x) dµ

supp(µ) ⊂ [−R,R]⇒ |bn| ≤ R, |an| ≤ R.

Conversely, if supn
(
|an|+ |bn|

)
= α <∞, J is a bounded

matrix of norm at most 3α. In that case, the spectral
theorem implies there is a measure dµ so that

〈(1, 0, . . .)t, J `(1, 0, . . .)t〉 =

∫
x`dµ(x)

If one uses Gram-Schmidt to orthonormalize
{J `(1, 0, . . .)t}∞`=0, one finds µ has Jacobi matrix exactly
given by J .



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Favard’s Theorem

We have thus proven Favard’s Theorem (his paper was in
1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard’s Theorem.There is a one–one correspondence
between bounded Jacobi parameters

{an, bn}∞n=1 ∈
[
(0,∞)× R

]∞
and non-trivial probability measures, µ, of bounded support
via:

µ⇒ {an, bn} (OP recursion)

{an, bn} ⇒ µ (Spectral Theorem)

There are also results for µ’s with unbounded support so
long as

∫
xn dµ <∞. In this case, {an, bn} ⇒ µ may not

be unique because J may not be essentially self-adjoint on
vectors of finite support.
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Let dµ be a non-trivial probability measure on ∂D. As in
the OPRL case, we use Gram-Schmidt to define monic OPs,
Φn(z) and ON OP’s ϕn(z).

In the OPRL case, if z is multiplication by the underlying
variable, z∗ = z. This is replaced by z∗z = 1.

In the OPRL case, Pn+1 − xPn ⊥ {1, x1, . . . , xn−2}. In the
OPUC case, Φn+1 − zΦn ⊥ {z, . . . , zn}, since

〈zΦn, z
j〉 = 〈Φn, z

j−1〉
if j ≥ 1.

In the OPRL case, we used deg P = n and
P ⊥ {1, x, . . . , xn−2} ⇒ P = c1Pn + c2Pn−1.

In the OPUC case, we want to characterize deg P = n,
P ⊥ {z, z2, . . . , zn}.
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Define ∗ on degree n polynomials to themselves by

Q∗(z) = znQ

(
1

z̄

)
(bad but standard notation!) or

Q(z) =
n∑
j=0

cjz
j ⇒ Q∗(z) =

n∑
j=0

cn−j z
j

Then, ∗ is anti-unitary and so for deg Q = n

Q ⊥ {1, . . . , zn−1} ⇔ Q = cΦn

is equivalent to

Q ⊥ {z, . . . , zn} ⇔ Q = cΦ∗n
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Thus, we see, there are parameters {αn}∞n=0 (called
Verblunsky coefficients) so that

Φn+1(z) = zΦn − αnΦ∗n(z)

This is the Szegő Recursion (History: Szegő and Geronimus
in 1939; Verblunsky in 1935–36)

Applying ∗ for deg n+ 1 polynomials to this yields

Φ∗n+1(z) = Φ∗n(z)− αnzΦn

The strange looking −ᾱn rather than say +αn is to have
the αn be the Schur parameter of the Schur function of µ
(Geronimus); also the Verblunsky parameterization then
agrees with αn. These are discussed in [OPUC1].



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Szegő recursion and Verblunsky
coefficients

Thus, we see, there are parameters {αn}∞n=0 (called
Verblunsky coefficients) so that

Φn+1(z) = zΦn − αnΦ∗n(z)

This is the Szegő Recursion (History: Szegő and Geronimus
in 1939; Verblunsky in 1935–36)

Applying ∗ for deg n+ 1 polynomials to this yields

Φ∗n+1(z) = Φ∗n(z)− αnzΦn
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For OPRL, we saw ‖Pn+1‖/‖Pn‖ = an+1. We are looking
for the analog for OPUC.

Szegő Recursion ⇒ Φn+1 + ᾱnΦ∗n = zΦn

Φn+1 ⊥ Φ∗n ⇒ ‖Φn+1‖2 + |αn|2 ‖Φ∗n‖2 = ‖zΦn‖2

Multiplication by z unitary plus ∗ antiunitary ⇒

‖Φn+1‖2 = ρ2n ‖Φn‖2; ρ2n = 1− |αn|2

which implies |αn| < 1 (i.e., αn ∈ D) and

‖Φn‖ = ρn−1 · · · ρ0
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Φn+1 ⊥ Φ∗n ⇒ ‖Φn+1‖2 + |αn|2 ‖Φ∗n‖2 = ‖zΦn‖2

Multiplication by z unitary plus ∗ antiunitary ⇒

‖Φn+1‖2 = ρ2n ‖Φn‖2; ρ2n = 1− |αn|2

which implies |αn| < 1 (i.e., αn ∈ D) and

‖Φn‖ = ρn−1 · · · ρ0



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

Szegő recursion and Verblunsky
coefficients

For OPRL, we saw ‖Pn+1‖/‖Pn‖ = an+1. We are looking
for the analog for OPUC.

Szegő Recursion ⇒ Φn+1 + ᾱnΦ∗n = zΦn
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Verblunsky’s Theorem.There is a one–one correspondence
between Verblunsky coefficients

{αn}∞n=0 ∈ D∞

and non-trivial probability measures, µ, of supported on D.

The measure determines the α’s via forming OPUC and
looking at recursion relations. One way of going in the
opposite direction is to write multiplication by z in an ON
basis obtained by orthonormalizing {1, z, z−1, z2, z−2, . . . }.
This basis can be written in terms of ϕn and ϕ∗n. The
matrix, called a CMV matrix is 5–diagonal with elements
quadratic in the α’s and ρ. One can go from the α’s to the
CMV matrix and get µ via the spectral theorem.
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Verblunsky’s Theorem

Before leaving the related subjects of Favard’s and
Verblunsky’s theorems, I want to points out that while we
have stated them for nontrivial measures only,

there are also
versions for n-point measures. In the OPUC case, one can
form {Φj}nj=1 and note that Φn is the zero function in L2,
vanishing at the pure points of the measure. Consistent
with ||Φn|| = 0 6= ||Φn−1||, one has that ρn−1 = 0. The net
result is a one-one correspondence of n-point measures and
Dn−1 × ∂D. This 2n− 1 dimensional set is consistent with
n free points and n weights in the simplex

∑n
j=1wj = 1.

For Jacobi, it is similar. Instead of ρn−1 = 0, we have
an = 0 and there are again 2n− 1 free parameters
{aj}n−1j=1 ∪ {bj}nj=1.
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versions for n-point measures. In the OPUC case, one can
form {Φj}nj=1 and note that Φn is the zero function in L2,
vanishing at the pure points of the measure.

Consistent
with ||Φn|| = 0 6= ||Φn−1||, one has that ρn−1 = 0. The net
result is a one-one correspondence of n-point measures and
Dn−1 × ∂D. This 2n− 1 dimensional set is consistent with
n free points and n weights in the simplex

∑n
j=1wj = 1.

For Jacobi, it is similar. Instead of ρn−1 = 0, we have
an = 0 and there are again 2n− 1 free parameters
{aj}n−1j=1 ∪ {bj}nj=1.
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We turn next to Szegő’s Theorem. In 1914, while still a
student in Budapest, Szegő proved a conjecture of Polya on
the asymptotics of determinants of Toeplitz matrices.

Forty
year’s later, Szegő found the second term in the
asymptotics, a results also sometimes called Szegő’s
Theorem (and which I call the strong Szegő Theorem) — in
these lectures, I mean the 1914 result and its descendants.
By a simple argument, ||Φn||2 is the minimum of∫
|P (x)|2dµ(x) over all monic polynomials of degree n.

Thus ||Φn||2 ≤ ||zΦn−1||2 = ||Φn−1||2 so the norms are
decreasing and thus have a limit. Szegő identified this limit:
Szegő’s Theorem

dµ = w(θ)
dθ

2π
+dµs ⇒ lim

n→∞
||Φn||2 = exp

(∫
log(w(θ))

dθ

2π

)
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Szegő’s Theorem as a Sum Rule

The version we just stated is from Szegő’s 1920-21 paper
on the foundations of OPUC which included the connection
of OPUC to Toeplitz matrices.

He also only included the
case µs = 0, in part because at that time singular measures
were not very well known or studied. Szegő only found the
recursion relation in 1939, so it didn’t have the form that
relies on Verblunsky coefficients.
Verblunsky, in 1935, found his parameters (with a different
definition), allowed µs 6= 0 and wrote in Szegő’s theorem in
the form: ∞∑

n=0

log(1− |αn|2) =

∫
log(w(θ))

dθ

2π

This has been called the Szegő-Veblunsky sum rule (by
Gamboa et. al in the work I’ll discuss in Lecture 2). It is a
precursor of the KdV sum rules. Verblunsky’s work was
widely ignored until about 15 years ago.
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Much of spectral theory involves studying the relations
between spectral information and parameters of the
equations defining the spectral information.

The most
common is that information on the parameters of the
equation implies information about the spectrum, e.g.
Lieb-Thirring bounds that say Lp properties of the potential
yield information on the negative eigenvalues.

Less common is information in the other direction. I
invented the name “gems of spectral theory” for
equivalences.
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Sum rules where one side only involves spectral information
and one side parameters generate gems by noting the
equivalence of the two sides being finite.

For this to work
easily, both sides have to be positive (or negative) to
prevent the issue of cancelling infinities. The
Szegő-Veblunsky sum rule implies a gem:

∞∑
n=0

|αn|2 ⇐⇒
∫

log(w(θ))
dθ

2π
> −∞

This is especially interesting because it implies there exists
`2 α’s with essentially arbitrary imbedded singular spectrum!
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prevent the issue of cancelling infinities. The
Szegő-Veblunsky sum rule implies a gem:

∞∑
n=0

|αn|2 ⇐⇒
∫

log(w(θ))
dθ

2π
> −∞

This is especially interesting because it implies there exists
`2 α’s with essentially arbitrary imbedded singular spectrum!
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Next, I want to discuss the issue of Szegő Asymptotics.

If∫
log(w(θ)) dθ2π > −∞, one can define a function, D(z) on

D by

D(z) = exp

(∫
eiθ + z

eiθ − z
log
(
w(θ)

)dθ
4π

)
By a cutoff argument, D ∈ H2(D) and |D(eiθ)|2 = f(θ) in
terms of boundary values. We have the following beautiful
calculation of Szegő:∫
|ϕ∗n(eiθ)D(eiθ)−1|2 dθ

2π
+

∫
|ϕ∗n(eiθ)|2dµs = 2

(
1−
∏∞
j=n ρj

)
LHS =

∫
dθ

2π
+

∫
|ϕ∗n(eiθ)|2dµ− 2 Re

∫
D(eiθ)ϕ∗n(eiθ)

dθ

2π

= 2− 2 Re
(
D(0)ϕ∗n(0)

)
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= 2

[
1−

∏∞
j=0 ρj

(∏n−1
j=0 ρ

−1
j

)]

Since RHS → 0 as n→∞ (if the product converges, i.e., if
the Szegő condition holds), each term goes to zero.

Thus
∫
|ϕ∗n(eiθ)|2dµs → 0 and ϕ∗nD → 1 in L2(∂D, dθ2π ).

Since the Poisson kernel Pz(eiθ) is L2 uniformly for
|z| ≤ r < 1, ϕ∗n(z)D(z)→ 1 uniformly on |z| ≤ r < 1.

Thus, uniformly in |z| ≥ r−1 > 1,

z−nϕn(z)→
[
D

(
1

z̄

)]−1
which is called Szegő asymptotics for ϕn.
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Szegő’s Asymptotics for [−2, 2]

In 1922, Szegő found a way to write OPRL for measures on
[−2, 2] in terms of OPUC for the measure dragged to ∂D
using the map eiθ 7→ x = 2 cos(θ).

If the measure on
[−2, 2] has absolutely continuous weight, f(x), the Szegő
condition translates to∫ 2

−2
(4− x2)−1/2 log

(
f(x)

)
dx > −∞

called the Szegő condition for [−2, 2]. The weight
(4− x2)−1/2 comes from dθ = (4− x2)−1/2 dx.

Szegő Asymptotics translates to the existence of analytic
functions, G, on D and, G̃, on C \ [−2, 2] so that if the
Szegő condition for [−2, 2] holds.
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Szegő’s Asymptotics for [−2, 2]

z−nPn

(
z +

1

z

)
→ G(z)

Equivalently, for x ∈ C \ [−2, 2](
x

2
+

√(x
2

)
− 1

)−n
Pn(x)→ G̃(x)

Various authors allowed adding discrete point spectrum
outside [−2, 2] until around 2000, Pehersdorfer-Yuditskii
and Killip-Simon got the ultimate result in cases where the
Szegő condition for [−2, 2] holds. In 2006, Damanik-Simon
found necessary and sufficient condition on the Jacobi
parameters for Szegő Asymptotics to hold that, surprisingly
to some, included some for which the Szegő condition for
[−2, 2] fails.
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Szegő’s Asymptotics for [−2, 2]

The function x 7→ x
2 +

√(
x
2

)
− 1 that replaces z when one

moves Szegő Asymptotics from D to [−2, 2] can be
understood by noting that its log is the potential theorist’s
Green’s function,

that is the unique function on C (with
e = [−2, 2])

1 It is harmonic and positive on C \ e
2 For q.e. x ∈ e, the boundary value is 0

3 Ge(z)− log |z| is harmonic at ∞

Moreover, near ∞

exp(Ge(z)) =
|z|
C(e)

+ O(1)

where C(e) is the logarithmic capacity of e which is 1 for
e = [−2, 2]).
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2 For q.e. x ∈ e, the boundary value is 0

3 Ge(z)− log |z| is harmonic at ∞

Moreover, near ∞

exp(Ge(z)) =
|z|
C(e)

+ O(1)

where C(e) is the logarithmic capacity of e which is 1 for
e = [−2, 2]).
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In 2000, Rowan Killip and I proved the following OPRL
analog of Szegő’s Theorem.

Killip–Simon Theorem Let dµ(x) = f(x) dx+ dµs with
Jacobi parameters {an, bn}∞n=1. Then

∞∑
n=1

(an − 1)2 + b2n <∞
if and only if

(i) (Blumental–Weyl) σess(J) = ess supp(dµ) = [−2, 2],
i.e., supp(dµ) is a set of pure points whose only possible
limit points are ±2: E−1 < E−2 < . . . < −2; 2 < . . . <
E+

2 < E+
1 .

(ii) (Lieb–Thirring)
∑
±,j(|E

±
j | − 2)3/2 <∞.

(iii) (Quasi-Szegő)
∫

(x2 − 4)1/2 log
(
f(x)

)
dx <∞.
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If J0 is Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition is

Tr
(
(J − J0)2

)
<∞

Weyl’s Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2]. Note that it is theorem of Weyl–von
Neumann that any self-adjoint operator has a
Hilbert–Schmidt perturbation that is dense pure–point. So
Killip–Simon says Jacobi perturbations of Jacobi matrices
are from different from the general case!

For Schrödinger operators in 1D (and so on half line),
Lieb–Thirring proved (initially for p > 1

2 , p = 1
2 is Weidl and

then Hundertmark–Lieb–Thomas)∑
Ej ,±
|E±j |

p ≤ Cp
∫ ∞
0
|V (x)|p+

1
2



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

The Gem

If J0 is Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition is

Tr
(
(J − J0)2

)
<∞

Weyl’s Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2].

Note that it is theorem of Weyl–von
Neumann that any self-adjoint operator has a
Hilbert–Schmidt perturbation that is dense pure–point. So
Killip–Simon says Jacobi perturbations of Jacobi matrices
are from different from the general case!

For Schrödinger operators in 1D (and so on half line),
Lieb–Thirring proved (initially for p > 1

2 , p = 1
2 is Weidl and

then Hundertmark–Lieb–Thomas)∑
Ej ,±
|E±j |

p ≤ Cp
∫ ∞
0
|V (x)|p+

1
2



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

The Gem

If J0 is Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition is

Tr
(
(J − J0)2

)
<∞

Weyl’s Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2]. Note that it is theorem of Weyl–von
Neumann that any self-adjoint operator has a
Hilbert–Schmidt perturbation that is dense pure–point.

So
Killip–Simon says Jacobi perturbations of Jacobi matrices
are from different from the general case!

For Schrödinger operators in 1D (and so on half line),
Lieb–Thirring proved (initially for p > 1

2 , p = 1
2 is Weidl and

then Hundertmark–Lieb–Thomas)∑
Ej ,±
|E±j |

p ≤ Cp
∫ ∞
0
|V (x)|p+

1
2



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

The Gem

If J0 is Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition is

Tr
(
(J − J0)2

)
<∞

Weyl’s Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2]. Note that it is theorem of Weyl–von
Neumann that any self-adjoint operator has a
Hilbert–Schmidt perturbation that is dense pure–point. So
Killip–Simon says Jacobi perturbations of Jacobi matrices
are from different from the general case!

For Schrödinger operators in 1D (and so on half line),
Lieb–Thirring proved (initially for p > 1

2 , p = 1
2 is Weidl and

then Hundertmark–Lieb–Thomas)∑
Ej ,±
|E±j |

p ≤ Cp
∫ ∞
0
|V (x)|p+

1
2



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

The Gem

If J0 is Jacobi matrix, an ≡ 1, bn ≡ 0, the L2 condition is

Tr
(
(J − J0)2

)
<∞

Weyl’s Theorem says J − J0 compact ⇒ σess(J) =
σess(J0) = [−2, 2]. Note that it is theorem of Weyl–von
Neumann that any self-adjoint operator has a
Hilbert–Schmidt perturbation that is dense pure–point. So
Killip–Simon says Jacobi perturbations of Jacobi matrices
are from different from the general case!

For Schrödinger operators in 1D (and so on half line),
Lieb–Thirring proved (initially for p > 1

2 , p = 1
2 is Weidl and

then Hundertmark–Lieb–Thomas)∑
Ej ,±
|E±j |

p ≤ Cp
∫ ∞
0
|V (x)|p+

1
2



Introduction

OPs

OPRL basics

Favard’s Theorem

OPUC basics

Szegő recursion
and Verblunsky
coefficients

Verblunsky’s
Theorem

Szegő’s Theorem

Szegő
Asymptotics

Killip-Simon
Theorem

The Gem

Hundertmark–Simon (Killip–Simon for p = 3
2)∑(

|E±j | − 2
)p ≤ C̃p ∞∑

n=0

|aj − 1|p+
1
2 + |bj |p+

1
2

Quasi-Sezgő because power is +1
2 , not −

1
2 of Szegő

condition.
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P2-Sum Rule

Define F on R \ [−2, 2] by (|β| > 1)

F (β + β−1) = 1
4

[
β2 − β−2 − log(β4)

]
;

F (E) = 1
2

∫ |E|
2

(y2 − 4)
1
2 dy

so F (E) > 0 and F (E) = 2
3

(
|E| − 2

) 3
2 +O

(
(|E| − 2)

5
2

)
.

Define G(a) = a2 − 1− log(a2), so
G(a) > 0 on (0,∞) \ {1}; G(a) = 2(a− 1)2 +O

(
(a− 1)3

)
.

Q(µ) = 1
4π

∫ 2
−2 log

(√
4−x2

2πf(x)

)√
4− x2 dx

P2-Sum Rule:

Q(µ) +
∑

F (E±n ) =

∞∑
n=1

[
1
4 b

2
n + 1

2 G(an)
]

if σess(µ) = [−2, 2]
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RHS <∞⇔
∑∞

n=1 b
2
n + (an − 1)2 <∞.

LHS <∞⇔ Quasi-Szegő +
∑

n,±
(
|E±n | − 2

) 3
2 <∞.

Thus P2-sum rule ⇒ KS Theorem.
Case had formal sum rules depending on terms in a Taylor
series. We called them Cn sum rules. The P2 sum rules is
C0 + 1

2C2. It happens that due to mysterious cancelations,
the terms in this combination are positive, which is why we
used “P”. But it remained something of a mystery why one
should take this combination and why the result was
positive. Also, why Szegő changes to Quasi-Szegő.
Nazarov-Peherstorfer-Volberg-Yuditskii and then, Denisov
Kupin for OPUC, did find ways of generating positive sum
rules but they didn’t seem to be calculationally tractable.
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