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Chebyshev Polynomials

In this lecture, a change of focus, although some of the
ideas in this lecture will be relevant to the last lecture when
we discuss OP’s again.

OP’s minimize L2 norms among all
monic polynomials. Here we’ll discuss the asymptotics of
L∞ minimizers which are called Chebyshev polynomials.
Our goal will be to describe a result obtained in the last
year by Christiansen, Zinchenko and me that resolves a
1969 conjecture of Harold Widom.

Let e ⊂ C be a compact, infinite, set of points. For any
function, f , define

‖f‖e = sup {|f(z)| | z ∈ e}
The Chebyshev polynomial of degree n is the monic
polynomial, Tn, with

‖Tn‖e = inf {‖P‖e | deg(P ) = n and P is monic}
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The minimizer is unique

(as we’ll see below in the case that
e ⊂ R), so it is appropriate to speak of the Chebyshev
polynomial rather than a Chebyshev polynomial. Chebyshev
invented his explicit polynomials which obey
Qn(cos(θ)) = cos(nθ) not because of their functional
relation but because they are the best approximation on
[−1, 1] to xn by polynomials of degree n− 1. In this regard,
Sodin and Yuditski unearthed the following quote from a
1926 report by Lebesgue on the work of S. N. Berstein.

I assume that I am not the only one who does not
understand the interest in and significance of these strange
problems on maxima and minima studied by Chebysbev in
memoirs whose titles often begin with, “On functions
deviating least from zero . . . ”. Could it be that one must
have a Slavic soul to understand the great Russian Scholar?
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The Alternation Theorem

This quote is a little bizarre given that, as we’ll see, Borel
(who was Lebesgue’s thesis advisor) made important
contributions to the subject in 1905!

We will focus for most
of this talk on the case e ⊂ R, in which case, Tn is real,
since on R, |Re(Tn)| is smaller than |Tn|.

We say that Pn, a degree n polynomial, has an alternating
set in e ⊂ R if there exists {xj}nj=0 ⊂ e with

x0 < x1 < . . . < xn

and so that

Pn(xj) = (−1)n−j‖Pn‖e
While the basic idea of the following theorem goes back to
Chebyshev, the result itself is due to Borel and Markov,
independently, around 1905.
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The Alternation Theorem The Chebyshev polynomial of
degree n has an alternating set.

Conversely, any monic
polynomial with an alternating set is the Chebyshev
polynomial.

If Tn is the Chebyshev polynomial, let y0 < y1 < . . . < yk
be the set of all the points in e where its takes the value
±‖Tn‖e. If there are fewer than n sign changes among
these ordered points we can find a degree at most n− 1
polynomial, Q, non-vanishing at each yj and with the same
sign as Tn at those points. For ε small and positive,
Tn − εQ will be a monic polynomial with smaller ‖·‖e. Thus
there must be at least n sign flips and therefore an
alternating set.
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The Alternation Theorem

Conversely, let Pn be a degree n monic polynomial with an
alternating set and suppose that ‖Tn‖e < ‖Pn‖e.

Then at
each point, xj , in the alternating set for Pn, Q ≡ Pn − Tn
has the same sign as Pn, so Q has at least n zeros, which is
impossible, since it is of degree at most n− 1. `

The alternation theorem implies uniqueness of the
Chebyshev polynomial. For, if Tn and Sn are two
minimizers, so is Q ≡ 1

2(Tn + Sn).

At the alternating points for Q, we must have Tn = Sn, so
they must be equal polynomials since there are n+ 1 points
and their difference has degree at most n− 1.
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minimizers, so is Q ≡ 1

2(Tn + Sn).

At the alternating points for Q, we must have Tn = Sn, so
they must be equal polynomials since there are n+ 1 points
and their difference has degree at most n− 1.
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Alternation and Zeros

If Tn is the Chebyshev polynomial for e ⊂ R and
x0 < x1 < . . . < xn is an alternating set for Tn,

there must
be at least one zero (in R, not necessarily in e) between
xj−1 and xj because of the sign change. Since this
accounts for all n zeros:

Fact 1 All the zeros of the Chebyshev polynomials of a set
e ⊂ R lie in R and all are simple and lie in cvh(e).

Here, cvh(e) is the convex hull of e and that result follows
from x0, xn ∈ e.
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By a gap of e ⊂ R, we mean a bounded connected
component of R \ e.

If there are only finitely many gaps and
no component of e is a single point, we speak of a finite gap
set. Between any two zeros of Tn, there is a point in the
alternating set so

Fact 2 Each gap of e ⊂ R has at most one zero of Tn.

Above the top zero (resp. below the bottom zero) of Tn,
|Tn(x)| is monotone increasing (resp. decreasing). It follows
that xn = supy∈e y (resp x0 = infy∈e y) so

Fact 3 At the end points of cvh(e) ⊂ R we have that
|Tn(x)| = ‖Tn‖e and

en ≡ T−1
n ([−‖Tn‖e, ‖Tn‖e]) ⊂ cvh(e)
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Coulomb Energies and All That

Szegő realized that Chebyshev polynomials are intimately
connected with two dimensional potential theory, so I want
to review some of the basics of that subject.

Given a
probability measure, dµ, of compact support on C, we
define its Coulomb energy, E(µ) by

E(µ) =

∫
dµ(x) dµ(y) log |x− y|−1

and we define the Robin constant, of a compact set e ⊂ C

R(e) = inf{E(µ) | supp(µ) ⊂ e andµ(e) = 1}

If R(e) =∞, we say e is a polar set or has capacity zero. If
something holds except for a polar set, we say it holds q.e.
(for quasi-everywhere).
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Equilibrium Measures and All That

The capacity, C(e), of e is defined by

C(e) = exp(−R(e)) R(e) = log(1/C(e))

If e is not a polar set, it follows from weak lower
semicontinuity of E(·) and weak compactness of the family
of probability measures that there is a probability measure
whose Coulomb energy is R(e). Since E(·) is strictly convex
on the probability measures, this minimizer is unique. It is
called the equilibrium measure or harmonic measure of e
and denoted dρe. The second name comes from the fact
that if f is a continuous function on e, there is a unique
function, uf , harmonic on (C ∪ {∞}) \ e, which approaches
f(x) for q.e. x ∈ e (i.e., solves the Dirichlet problem) and

uf (∞) =

∫
e
f(x)dρe(x)
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Green’s Function

The function Φe(z) =
∫
e dρe(x) log |x− z|−1 is called the

equilibrium potential.

The Green’s function, Ge(z), of a
compact subset, e ⊂ C, is defined by

Ge(z) = R(e)− Φe(z)

It is the unique function harmonic on C \ e with q.e.
boundary value 0 on e and so that Ge(z)− log |z| is
harmonic at ∞. Moreover, Ge(z) ≥ 0 everywhere and near
∞

Ge(z) = log |z|+R(e) + O(1/|z|)
equivalently,

exp(Ge(z)) =
|z|
C(e)

+ O(1)
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Bernstein Walsh Lemma

Theorem(Berstein Walsh Lemma) Let e ⊂ C be compact
and let qn(z) be a polynomial of degree n. Then for all
z ∈ C

|qn(z)| ≤ ‖qn‖e exp(nGe(z))

Here is a sketch for general e, not just e ⊂ R: Since Ge(z)
is non-negative this holds on e and, by the maximum
principle, on bounded components of C \ e. On the
unbounded component with the zeros of qn removed
nGe(z)− log |qn(z)|+ log ‖qn‖e is harmonic and it is
harmonic at ∞. At zeros it approaches ∞ and any limit on
e is non-negative. So the inequality holds by the maximum
principle. `
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Applying this to qn = Tn, near infinity

(taking limits after
subtracting n log |z|), we see that

1 ≤ ‖Tn‖e exp(nR(e))

so we get an inequality of Szegő

‖Tn‖e ≥ C(e)n

As we’ll see shortly, there are sets where this is optimal but
for e ⊂ R, there is a lower bound of 2C(e)n, which we’ll see
somewhat later. This is also optimal.
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Example (∂D, the unit circle)

Its Green’s function is log |z|
so R(e) = 0 and C(e) = 1. Since Tn is monic∫ 2π

0 exp(−inθ)Tn(exp(iθ)) dθ/2π = 1

we see that ‖Tn‖e ≥ 1 so that

Tn(z) = zn; ‖Tn‖e = 1 = C(e)n

Example ([−1, 1]) It is known (and follows from results
later) that C(e) = 1

2 . By the Alternation Theorem, the
polynomials given by Qn(cos(θ)) = cos(nθ) (i.e. “the
Chebyshev polynomials of the first kind”) are multiples of
Chebyshev polynomials as we’ve defined them, so

Tn(cos(θ)) = 2−n+1 cos(nθ); ‖Tn‖e = 2−n+1 = 2C(e)n
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The final preliminary we need concerns the spectra of
periodic Jacobi matrices. So {an, bn}∞n=−∞ are two-sided
sequences with an > 0, bn ∈ R and some p > 0 in Z so that

an+p = an bn+p = bn

We define doubly infinite tridiagonal matrices, J , with bn
along the diagonal and an on the principle subdiagonals (so
that row j has non-zero elements aj−1 bj aj with bj in
column j.).

For z ∈ C fixed, we are interested in solutions, {un}∞n=−∞,
of

anun+1 + bnun + an−1un−1 = zun

We study the p-step transfer (aka update) matrix.

Mp(z)(
u1
a0u0 ) = (

up+1
apup )
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We put a’s in the bottom component so the one step matrix
1
aj

(
z−bj −1

a2j 0 ) has determinant 1 and thus det(Mp(z)) = 1.

In terms of the orthogonal polynomials for Jacobi
parameters {an, bn}∞n=1,

Mp(z) =

(
pp(z) −qp(z)

appp−1(z) −apqp−1(z)

)
The discriminant, ∆(z), is defined by

∆(z) = Tr
(
Mp(z)

)
= pp(z)− apqp−1(z)

is a (real) polynomial of degree exactly p. Given the
recursion relations for pj(z) or the form of the one step
transfer matrix, we see that ∆(z) is a polynomial of degree
p with leading coefficient (a1 . . . ap)

−1.
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If Mp(z) has an eigenvalue λ, it is easy to see the difference
equation has a (Floquet) solution obeying

uj+np = λnuj

Since det(Mp(z)) = 1, if λ 6= ±1, we get two linearly
independent solutions, so if |λ| 6= 1, all solutions are
exponential growing at ∞ and/or at −∞. On the other
hand, if |λ| = 1, there is a bounded solution. Note that
Mp(z) has an eigenvalue with |λ| = 1 if and only if
∆(z) ∈ [−2, 2].

Since it is known that the spectrum of J is the closure of
the set of z for which there are polynomially bounded
solutions (Schnol’s Theorem), we conclude that

spec(J) = ∆−1([−2, 2]) so we have that ∆−1([−2, 2]) ⊂ R
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If f(z) is an entire function real on the real axis and
f ′(x0) = 0 for x0 ∈ R,

because of the local structure of
analytic functions, there will be non-real z’s near x0 with
f(z) a real value near f(x0). Thus ∆−1[−2, 2] ⊂ R implies
that

∆(x) ∈ (−2, 2) ⇒ ∆′(x) 6= 0

Therefore, between successive points where ∆(x0) = ±2
and where ∆(x1) = ∓2, ∆(x) is strictly monotone and ∆ is
a bijection. It follows there are real numbers
α1 < β1 ≤ α2 < . . . βp−1 ≤ αp < βp so that

∆−1([−2, 2]) =
⋃p
j=1 [αj , βj ] = spec(J)
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The [αj , βj ] are the bands and (βj−1, αj) are the gaps.

If
βj−1 = αj , we say that the gap is closed ; otherwise it is
open. Notice that ∆(αj) 6= ∆(βj) = ∆(αj+1) so that
α1, β1, β2, . . . , βp is an alternating set for ∆(x) on Spec(J).
We have thus proven

Theorem Let J be a period p periodic Jacobi matrix with
Jacobi parameters {an, bn}∞n=−∞ and let ∆(z) be its
discriminant.Then (a1 . . . ap)∆(z) is the pth Chebyshev
polynomial for spec(J).

Notice that since the Jacobi parameters are also periodic
with period 2p, 3p, . . ., for e = spec(J), we have that
T−1
n [−‖Tn‖e, ‖Tn‖e] = e for n = kp with k = 1, 2, . . . The

idea of exploiting the fact that spec(J) is a polynomial
inverse image goes back to Geronimo-van Assche and was
raised to high art by Totik.
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Potential Theory and the Discriminant

The magic is that, when e = spec(J), we can write the
Green’s function, capacity and equilibrium measure explicitly
in terms of the discriminant! We claim that

Ge(z) =
1

p
log

∣∣∣∣∣
(

∆(z)

2
+

√
∆(z)2

4
− 1

)∣∣∣∣∣
where the branch of the square root is taken which, when
|z| is large, is czp + O(zp−1) with c > 0 and with branch
cuts on e. To prove this, note that the function, q(z), inside
the absolute value is of the form cos(θ) + i sin(θ) if (and
only if) ∆(z) ∈ [−2, 2] and thus Ge vanishes on e. Since
the function q is everywhere non vanishing and analytic on
C \ e, Ge is harmonic there and it is log |z|+ O(1) near ∞.
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C \ e, Ge is harmonic there and it is log |z|+ O(1) near ∞.
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We note that, of course, ∆(z)
2 can be replaced by Tp(z)

‖Tp‖e .

Reading the constant at infinity from the coefficient of the
highest order term of ∆(z), we see that

R(e) = 1
p log |a1 . . . ap| so that C(e) = |a1 . . . ap|1/p.

which implies that the measure for the Jacobi problem is
regular in the sense of Stahl-Totik. Since ∆(z)

2 =
Tp(z)
‖Tp‖e , we

conclude that ‖Tp‖e = 2C(e)p

The conjugate function to log |q(z)| is arg q(z) which on e

is given by arccos(∆(x)
2 ). From this we conclude that each

band obeys ρe([αj , βj ]) = 1
p so, taking into account possible

closed gaps, each connected component of e has harmonic
measure k

p with k ∈ Z+.
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This has a converse.

One way of seeing this is to use the
fact that every finite gap subset, e ⊂ R has associated to it
a natural isospectral torus, i.e. if there are ` gaps, there are
a family of {aj , bj}∞j=−∞ forming an `-dimensional torus so
that for each of them, their spectrum is e. Moreover, the
Jacobi parameters are almost periodic with frequency
module generated by the harmonic measures of the
connected components of e.

If these harmonic measures are all kp with k ∈ Z+, the
Jacobi matrices in the isospectral torus are periodic of
period p. Thus

Theorem A subset e ⊂ R is the spectrum of a period p
Jacobi matrix if and only if it has no more than p connected
components where each such component has harmonic
measure k

p with k ∈ Z+.
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Consequence for Chebyshev
Polynomials

Call a set ẽ which is the spectrum of a period n Jacobi
matrix, a period n set.

Let x0 < x1 < . . . < xn be an
alternating set for Tn. For notational simplicity, suppose
Q ≡ ‖Tn‖e and that n is odd. Then at x0 and x2,
Tn(x) = −Q and somewhere in (x0, x2) (namely, at x1),
Tn(x) = Q. This means that either x1 is a double zero of
Tn −Q or there are at least two points in (x0, x1) where
Tn(x) = Q. It follows that (counting multiplicity) there are
n points each in R where Tn = ±Q.

Thus en ≡ T−1
n ([−Q,Q]) ⊂ R (and we saw en lay in

cvh(e)). Letting ∆ be 2Tn/Q, we can write the Green’s
function for en explicitly and conclude that en is a period n
set and that Tn is also a Chebyshev polynomial for en.
Summarizing
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Call a set ẽ which is the spectrum of a period n Jacobi
matrix, a period n set. Let x0 < x1 < . . . < xn be an
alternating set for Tn. For notational simplicity, suppose
Q ≡ ‖Tn‖e and that n is odd.

Then at x0 and x2,
Tn(x) = −Q and somewhere in (x0, x2) (namely, at x1),
Tn(x) = Q. This means that either x1 is a double zero of
Tn −Q or there are at least two points in (x0, x1) where
Tn(x) = Q. It follows that (counting multiplicity) there are
n points each in R where Tn = ±Q.

Thus en ≡ T−1
n ([−Q,Q]) ⊂ R (and we saw en lay in

cvh(e)). Letting ∆ be 2Tn/Q, we can write the Green’s
function for en explicitly and conclude that en is a period n
set and that Tn is also a Chebyshev polynomial for en.
Summarizing



Chebyshev
Polynomials

Alternation
Theorem

Potential Theory

Periodic Jacobi
Matrices

Faber Fekete
Szegő Theorem

Widom’s Work

Totik
Approximation

CSZ Results

Consequence for Chebyshev
Polynomials
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Consequence for Chebyshev
Polynomials

Fact 1 e ⊂ en ≡ T−1
n ([−Q,Q]) ⊂ cvh(e).

en is a period n
set with the same Chebyshev polynomial as e and
‖Tn‖e = 2C(en)n

Since e ⊂ en, we have C(en) ≥ C(e) and thus

Theorem (Schiefermayr’s Theorem) ‖Tn‖e ≥ 2C(e)n

Suppose that ẽ ⊃ e is a period n set and let Sn be its nth
Chebyshev polynomial. Since it is monic we must have that
‖Sn‖e ≥ ‖Tn‖e which means that C(ẽ) ≥ C(en). Taking
into account the uniqueness of Tn we see that

Fact 2 For all period n sets ẽ ⊃ e, we have C(ẽ) ≥ C(en)
with equality only if ẽ = en.
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Theorem (Faber–Fekete–Szegő Theorem) For any compact
subset e ⊂ C, we have that

lim
n→∞

‖Tn‖1/ne = C(e)

Given Szegő’s lower bound, we get a lower bound on the
lim inf by C(e). One can get an upper bound on ‖Tn‖1/ne by

sup
zj∈e

∏
1≤j 6=k≤n+1

|zj − zk|1/n(n+1)

using suitable trial monic polynomials. Fekete proved that
as n→∞, this last quantity had a limit that he called the
transfinite diameter. One can view this sup as the
exponential of the negative of a discrete Coulomb energy of
n+ 1 point charges, each of charge about 1

n+1 , so Szegő’s
proof that this is C(e) is natural from a Coulomb energy
point of view.
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History

Faber’s name is associated to this theorem because of a
1919 paper in which he proved a result that is both much
more restrictive and much stronger than what we call the
FFS Theorem.

It is more restrictive in that he only studied
the special case where e is a single (closed) analytic Jordan
curve. But in this case, he proved much more — first he
proved that limn→∞‖Tn‖e/C(e)n = 1.

He also obtained asymptotics for the polynomials
themselves. The unbounded component, Ω, of
(C ∪ {∞}) \ e is simply connected, so Ge(z) has a single
valued harmonic conjugate and thus, by exponentiating,
there is a function, Be(z), on Ω with
|Be(z)| = exp(−Ge(z)) with an overall phase determined by
demanding that as z →∞, we have that
B−1

e (z) = z
C(e) + O(1). Since the curve is analytic, Be(z)

has an analytic continuation to a neighborhood of e.
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Faber proved that uniformly on Ω plus a neighborhood of e,
Tn(z)Be(z)

nC(e)−n → 1.

Faber didn’t mention Green’s
functions or capacities at all! In this case, B(z) can be
described as the Riemann map of Ω to D) (with positive
“derivative” at ∞) and the capacity appears as the value of
that “derivative”.

Interestingly enough, for these polynomials, Faber had
“Szegő asymptotics” three years before Szegő had his
asymptotics (for OPUC, not Chebyshev polynomials).

Fekete’s work on transfinite diameters and its connection to
capacity for some special cases is from 1923. Szegő had the
full theorem in a 1924 paper whose title started “Comments
on a paper by Mr. M. Fekete”.
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In 1969, Widom published a 100+ page brilliant, seminal
work on asymptotics of Chebyshev and orthogonal
polynomials. In his set up, e is a finite union of (closed)
analytic Jordan curves and/or (open) Jordan arcs.

The
cases with e ⊂ R are exactly the finite gap sets.

As in the work of Faber, it is natural to look for an analytic
function, Be(z), with |Be(z)| = exp(−Ge(z)) on Ω, the
unbounded component of (C ∪ {∞}) \ e. The problem is
that Ω is no longer simply connected so the magnitude of
Be(z) is single valued but its phase is multivalued.

Put differently, Be(z) can be continued along any curve in
Ω and there is a map from the fundamental group of Ω to
∂D, which is a character (i.e. group homomorphism), so
that after continuation around a closed curve, Be(z) is
multiplied by the character applied to that curve.
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polynomials. In his set up, e is a finite union of (closed)
analytic Jordan curves and/or (open) Jordan arcs. The
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that Ω is no longer simply connected so the magnitude of
Be(z) is single valued but its phase is multivalued.

Put differently, Be(z) can be continued along any curve in
Ω and there is a map from the fundamental group of Ω to
∂D, which is a character (i.e. group homomorphism), so
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Indeed, if the curve loops around a subset g ⊂ e, the phase
changes by −2πρe(g).

If Tn(z)Be(z)
nC(e)−n had a limit, that limit cannot be n

independent since the character is n dependent. Widom had
the idea that there should be functions Fχ(z) defined for
each χ in the character group and continuous in χ so the
limit is the Fχ, call it Fn, associated to the character of
Be(z)

n. As a function of n, the limit will be almost periodic!
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Widom’s Minimizers

He even found a candidate for the functions! Let Fχ(z) be
that function among all character automorphic functions,
A(z), on Ω with character χ and with A(∞) = 1, that
minimizes supz∈Ω{|A(z)|}.

Widom proved uniqueness of the minimizer and found a
formula for it (in terms of some theta functions and
solutions of some implicit equations). He also proved that
‖Fχ‖Ω is continuous in χ. Because of the uniqueness, one
can prove that the functions, Fχ(z), defined for z ∈ Ω, are
continuous in χ on the compact set of characters, uniformly
locally in z (but as functions on the covering space not
uniformly in all z).
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Widom’s Theorems and Conjecture

Theorem (Widom) Let e be a finite union of disjoint
analytic Jordan curves. Let Fn(z) be as above for the
character of Be(z)

n. Then:

lim
n→∞

‖Tn‖e
C(e)n‖Fn‖Ω

= 1; lim
n→∞

[
Tn(z)Be(z)

n

C(e)n
− Fn(z)

]
= 0

where the limit is uniform on compact subsets of Ω.

Since |Be(z)| → 1 and ‖Fn‖Ω is taken as z → e , the z
asymptotics and norm limit fit together.
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Theorem (Widom) Let e be a finite gap subset of R. Let
Fn(z) be as above. Then

lim
n→∞

‖Tn‖e
2C(e)n‖Fn‖Ω

= 1

Conjecture (Widom) Let e be a finite gap subset of R. Let
Fn(z) be as above. Then:

lim
n→∞

[
Tn(z)Be(z)

n

C(e)n
− Fn(z)

]
= 0

uniformly on compact subsets of Ω.

The norm, ‖Tn‖e is twice as large as one might expect!
Note: This is Widom’s conjecture for e ⊂ R; he made the
conjecture for more general cases of e ⊂ C.
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Back to [−1, 1]

Example We return to the case of [−1, 1]

where Ω is
simple connected so Fn(z) ≡ 1. We have that
Be(z) = z −

√
z2 − 1 (since the period 1 discriminant is

2z). Notice that B−1
e (z) = z +

√
z2 − 1. On [−1, 1], of

course, Be(x) has magnitude 1 (since Ge(x) = 0) so
Be(x) = exp(−iθ) and cos(θ) = 1

2 [Be(x) +B−1
e (x)] = x.

Thus, by Tn(cos(θ)) = 2−n+1 cos(nθ), we see that
Tn(z) = 2−n[Bn

e (z) +B−ne (z)]. For z ∈ [−1, 1], both terms
contribute and at some points add to 2 and we get
‖Tn‖e = 2−n+1 = 2C(e)n. On Ω, |Be(z)| < 1 so the Bn

term is negligible as n→∞ and we lose the factor of 2.

It was this example that led Widom to his conjecture.
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Outer Approximation for General Sets

In order to extend Markov and other polynomial inequalities
to general sets, Totik proved that:

Theorem (Totik’s Approximation Theorem) For any
compact set e ⊂ R, there exist period n sets ẽn ⊃ e so that
C(ẽn)→ C(e)

This result was proven by approximating e by finite gap sets
and then proving this result for finite gap set (the finite gap
set result was proven independently by Bogatyrëv,
McKean-van Moerbeke, Peherstorfer, Robinson). It was
later used by Totik and by Simon to extend Lubinsky’s first
sinc kernel universality result from [−1, 1] to general sets e.

Totik published his approximation theorem in 2001. In
2009, he published an improvement for finite gap case:
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Totik–Widom bounds

Theorem (Totik’s 1/n bound) If e is a finite gap set, the
period n sets ẽn ⊃ e can be chosen so that
C(ẽn) ≤ C(e)

(
1 + E

n

)
for some constant E.

Because ‖Tn‖e = 2C(en)n, this bound is equivalent to

Theorem (Totik–Widom bounds in the finite gap case) If e
is a finite gap set, then for a constant D we have that

‖Tn‖e ≤ DC(e)n

This complements the 2C(e)n lower bound. Because of his
asymptotic result, Widom already had this bound in 1969
but Totik’s proof was much simpler. Neither proof has very
explicit estimates for D. Even though they only had the
result for finite gap sets, we will say that a general set e has
Totik–Widom bounds, if there is an upper bound of the
above form.
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Totik Widom Bounds

Recall that we say that e ⊂ R obeys a Totik-Widom bound
if there is a D with ‖Tn‖e ≤ DC(e)n and that this was only
known for finite gap sets.

A compact subset e ⊂ R is called
homogeneous if there exist Q and c ∈ (0, 1

2) so that

∀x∈e ∀0<δ<Q |e ∩ (x− δ, x+ δ)| > cδ

a notion introduced by Carleson in his study of sets for
which the Corona Theorem holds. A positive measure
Cantor set (i.e. [0,1] with the middle 1

nj
th removed at step

j where
∑∞

1
1
nj
<∞) is homogeneous.

Theorem Every homogeneous set obeys a Totik Widom
bound.
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Parreau Widom Sets

We also get rather explicit bounds on D.

A set e ⊂ C is
said to be a Parreau Widom set if

PW (e) ≡
∑

w∈C Ge(w) <∞

where C is the set of critical points of Ge (i.e. points where
G′e(w) = 0).

Theorem If e ⊂ R is a regular Parreau-Widom set, then

‖Tn‖e ≤ 2 exp(PW (e))C(e)n

Homogeneous sets are regular and obey a Parreau Widom
condition (a theorem of Jones and Marshall). This explicit
constant is interesting even for the finite gap case.

Interesting Open Question Does potential theory
regularity + Parreau-Widom ⇒ Totik-Widom bound for
general e ⊂ C (our proof is only for e ⊂ R).
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Widom’s Conjecture

Theorem Widom’s conjecture on the almost periodic Szegő
asymptotics outside e for the Chebyshev polynomials of
finite gap sets is true.

The secret sauce for most of our proofs is exploiting the
sets en and that we know a lot about their discriminants.
Remarkably, all the proofs are rather simple, once we open
the bottle with this sauce. We are fortunate that by proving
uniqueness and continuity of the Fχ and the norm
asymptotics, Widom has done most of the heavy lifting. We
just need the secret sauce to sprinkle on the factors of 2 to
make them disappear.
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