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Isospectral Torus

We saw that a period-p two-sided Jacobi matrix had a set
of bands as its spectrum, e.

This set has ` ≤ p− 1 gaps in
it. (Generically, one has equality.) The isospectral torus of
the set e is the family of period-p two-sided Jacobi matrices
with spectrum e. We can view it as a subset of
[(0,∞)× R]p It is a torus of dimension `.

We also saw that the e’s that arose this way are very
special: each connected component has harmonic measure a
multiple of 1

p . For a general compact set e ⊂ R with ` gaps
(dubbed finite gap sets), one can construct a natural set, a
torus in the product topology, of almost periodic two-sided
Jacobi matrices associated to e. The frequency module of
these almost periodic functions is a subset of the one
generated by the harmonic measures of the components of
e. This set is called the isospectral torus of the set e.
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Isospectral Torus

The torus can be constructed in at least three distinct ways:

1 Reflectionless Jacobi Matrices which goes back to
work on the KdV equation. In this picture, elements of
the isospectral torus are associated to points in the
closure of each gap with a ± choice, except at the end
points. Two copies of an open interval glued at their
endpoints is a circle.

2 Minimal Herglotz Functions which is discussed by
CSZ. Points are associated to half line Jacobi matrices
and the data are the poles on a two sheeted branched
Riemann surface. The branch points are the edges of
the gaps, so the inverse image of each gap closure is a
circle.
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Isospectral Torus

3 Character Automorphic H2 Spaces The is due to
Sodin-Yuditskii and they call it the functional model.
The labels are characters for the fundamental group of
(C∪ {∞}) \ e. One looks at the character automorphic
functions with that character in a suitable Hardy space
and finds a natural basis and Jacobi operator in that
basis. pause The character group is, of course, a torus.

We’ll discuss the first two briefly now, and, if time allows
the third in more detail later since it is an important
element of Yuditskii’s work.
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Reflectionless Operators

This approach involves the relation of a whole line Jacobi
matrix, J, with parameters {an, bn}∞n=−∞ and the half line
Jacobi matrices, J± with parameters {an, bn}∞n=1 and
{a−1−n, b−n}∞n=1.

One defines

Gnm(z) ≡ 〈δm, (J − z)−1δn〉 m±(z) ≡ 〈δ1, (J
±− z)−1δ1〉

related by

G00(z) = −
(
z − b0 + a2

0m
+(z) + a2

−1m
−(z)

)−1

and if m+
1 is the m-function of the Jacobi matrix with

parameters {an+1, bn+1}∞n=−∞

m+(z) = − 1

z − b1 + a2
1m

+
1 (z)

Given a finite gap set, e, a whole Jacobi matrix is called
reflectionless on it spectrum, e, if for all n and a.e. x ∈ e,
we have that limε↓0 Re(Gnn(x+ iε)) = 0.
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Reflectionless Operators

I first claim that G00 can be written explicitly once one
knows where its zeros are.

It is strictly monotone in each
gap so it has at most one zero in each gap. If it has no zero
in an open gap, we place a zero at the bottom if G00 is
positive in the gap and at the top if it is negative. Following
Craig, we write a Herglotz representation for log(G00(z))
and obtain G00 in terms of e and the positions of the zeros
in the gap.
Using the vanishing of Re(Gnn(x+ i0)) for all n, one
proves that on e, a2

0m
+(x+ i0) = −a2

−1m
−(x+ i0). Thus,

on e, Im(a2
0m

+(x+ i0)) = 1
2 Im(G00(x+ i0)) so to

determine m+ and so J+, we need to know about bound
states. Those can only occur zeros in the gap and must be
either on the right or left – so for zeros in the gap, we have
a left/right choice. Thus we’ve constructed a full torus.



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Reflectionless Operators

I first claim that G00 can be written explicitly once one
knows where its zeros are. It is strictly monotone in each
gap so it has at most one zero in each gap. If it has no zero
in an open gap, we place a zero at the bottom if G00 is
positive in the gap and at the top if it is negative.

Following
Craig, we write a Herglotz representation for log(G00(z))
and obtain G00 in terms of e and the positions of the zeros
in the gap.
Using the vanishing of Re(Gnn(x+ i0)) for all n, one
proves that on e, a2

0m
+(x+ i0) = −a2

−1m
−(x+ i0). Thus,

on e, Im(a2
0m

+(x+ i0)) = 1
2 Im(G00(x+ i0)) so to

determine m+ and so J+, we need to know about bound
states. Those can only occur zeros in the gap and must be
either on the right or left – so for zeros in the gap, we have
a left/right choice. Thus we’ve constructed a full torus.



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Reflectionless Operators

I first claim that G00 can be written explicitly once one
knows where its zeros are. It is strictly monotone in each
gap so it has at most one zero in each gap. If it has no zero
in an open gap, we place a zero at the bottom if G00 is
positive in the gap and at the top if it is negative. Following
Craig, we write a Herglotz representation for log(G00(z))
and obtain G00 in terms of e and the positions of the zeros
in the gap.

Using the vanishing of Re(Gnn(x+ i0)) for all n, one
proves that on e, a2

0m
+(x+ i0) = −a2

−1m
−(x+ i0). Thus,

on e, Im(a2
0m

+(x+ i0)) = 1
2 Im(G00(x+ i0)) so to

determine m+ and so J+, we need to know about bound
states. Those can only occur zeros in the gap and must be
either on the right or left – so for zeros in the gap, we have
a left/right choice. Thus we’ve constructed a full torus.
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Quadratic Irrationalities

We turn next to our second specification of the isospectral
torus. Legendre proved that irrational numbers have
continued fraction expansions that are eventually periodic if
and only if they are roots of a quadratic equation (with
integral coefficients).

We saw above that Jacobi parameters
are the coefficients of a continued fraction expansion of the
m-function. One can prove that the m-function of period-p
obey obeys an equation of the form:

α(z)m(z)2 + β(z)m(z) + γ(z) = 0

Moreover β(z)2 − 4α(z)γ(z) = ∆2(z)− 4. Thus, these
m-functions have an analytic continuation to the Riemann
surface of

√
∆2(z)− 4 which has cuts precisely on e. As

one runs through the isospectral torus, the zeros in any gap
loop around the two sheets. This describes the torus
structure in this case – an element of the torus is specified
by the positions of the zeros in the two sheeted gaps.
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Minimal Herglotz Functions

For a general finite gap set e = ∪`+1
j=1[αj , βj ] ⊂ R, the

m-functions are not the solutions of quadratic equations

but
they do have meromorphic continuations to the two sheeted

Riemann surface of
√∏`+1

j=1(z − αj)(z − βj) which has
genus `. By a minimal Herglotz function, we mean a
meromorphic function on this surface which on the main
sheet is Herglotz in the UHP and real in the gaps and which
has degree `+ 1 with a pole at ∞−. This degree is the
minimal degree for meromorphic functions on this surface
which are not continuous across e. We normalize so near
∞+, m(z) = −1

z + O(z−2).

One can show every such function is determined by the
locations of its poles and that there is exactly one pole in
each gap on one of the two sheets. This gives a full torus .
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The Theorem of DKS

Let Te be the isospectral torus of a finite gap set e. If J, J ′

are two half line Jacobi matrics, one sets

dn(J, J ′) =
∑∞

j=0 e
−j
[
|an+j − a′n+j |+ |bn+j − b′n+j |

]
and

dn(J, Te) = minJ ′∈Te dn(J, J ′).

Damanik–Killip–Simon Theorem (2010) Let
dµ(x) = f(x) dx+ dµs with Jacobi parameters
{an, bn}∞n=1. Then

∞∑
n=1

dn(J, Te)2 <∞
if and only if
(i) (Blumental–Weyl) σess(J) = ess supp(dµ) = e,
(ii) (Lieb–Thirring)

∑
E∈σ(J)\e(dist(E, e))

3/2 <∞.

(iii) (Quasi-Szegő)
∫

(dist(x,R \ e))1/2 log
(
f(x)

)
dx <∞.
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“Direct Integral” Viewpoint

Let S be the operator on two sided `2 sequences
(Su)n = un−1. If J is a two sided period-n Jacobi matrix,
[J, Sn] = 0 so they can be simultaneously diagonalized.

Floquet solutions are the simultaneous eigenvectors so the
relation that if e is the energy of a solution with Floquet
parameter λ, then ∆(e) = λ+ λ−1 becomes

∆(J) = Sn + S−n

One formal proof uses the theory of direct integrals. This is
one half of the Magic Formula that for a two sided bounded
J:

∆(J) = Sn + S−n ⇐⇒ J has periodn and J ∈ Te
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The Other Direction

On the other hand, if ∆(J) = Sn + S−n,

then, since
[J,∆(J)] = 0, we have that JSn + JS−n = SnJ + S−nJ .
A little thought shows that this equation for any finite band
matrix implies that [J, Sn] = 0.

If ∆̃ is the discriminant for J, we see that ∆̃(J) = ∆(J) by
the other direction of the magic formula formula for σ(J).
A little lemma shows for any Jacobi matrix, J , if
p(J) = q(J) for two polynomials, then the two polynomials
are equal. Since ∆ is the discriminant for J , we have that
σ(J) = ∆−1[−2, 2] = e so J ∈ Te.
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Applications

If J is a perturbation of J0 ∈ Te, ∆(J) will be a
perturbation of Sn + S−n.

∆(J) in will have only n
non-zero diagonals above and below the main. That means
by using n× n blocks, it will be tridiagonal. It is what is
called a block Jacobi matrix. Notice that Sn + S−n has 0
diagonal blocks and 1 off-diagonal blocks.
For example, it is easy to extend Lieb-Thirring bounds on
eigenvalues outside [−2, 2] to the block case and this leads
one to proofs of Lieb-Thirring bounds on eigenvalues
outside e for perturbations of J0 ∈ Te.
It is easy to get a Killip–Simon theorem on the equivalence
of ∆(J)− Sn − S−n in Hilbert Schmidt class. The hard
work in the DKS result is translate that into information
about J and that was only possible if all gaps were open.
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Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant.

One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations.

Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.

Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity

3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant

Consider now a general finite gap set, e ⊂ R with
` ≡ N − 1 gaps. If it is not a period-N set, it does not have
a polynomial discriminant. One might consider trying its
Chebyshev polynomials with increasing n, but but there will
be more and more oscillations. Remarkably, Yuditskii has
found a replacement we’ll call the Yuditskii Discriminant and
write as ∆(z). It is different from the usual discriminant
even in the simplest cases where e is a period-` set. It is a
bit of abusive notation to use the same symbol but
henceforth, we won’t have need for the usual discriminant.
Theorem (Yudiski) Let e be a finite gap set with ` gaps.
Then there is a unique rational function, ∆(z) so that

1 ∆−1[−2, 2] = e

2 ∆ has a simple pole at infinity
3 ∆ � C+ is a Herglotz function



Isospectral Torus

Killip–Simon for
Period-n Sets

DKS Magic
Formula

The Yuditskii
Discriminant

GMP Matrices

Yuditskii Magic
Formula

Killip–Simon for
General Finite
Gap Sets

Functional Model
for the
Isospectral Torus

Yuditski Discriminant: Uniqueness

A rational Herglotz function which has vanishing imaginary
part on part of the real axis has simple poles on R with
negative residues and in this case also a pole at infinity.
Between poles on R, it is monotone increasing.

It is near
minus infinity near minus infinity and must have values in
[−2, 2] before the first pole. It follows that there must be a
first pole in the first gap of e and then exactly one in each
gap.

It follows that ∆ = P/Q where P has degree `+ 1 and Q
degree `. Moreover, ∆ = −2 at the bottom of each
connected component of e and +2 at the tops.

If also R/S, is another such rational Herglotz function, then
PS −QR is a polynomial of degree at most 2`+ 1 which
vanishes at the 2`+ 2 edges of the bands. Thus it is zero,
proving uniqueness.
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Yuditski Discriminant: Existence

Again, remarkably, there is a closed form formula for ∆!

We’ll just conjure it out of thin air, but it is connected to
some well known objects in complex analysis. For any
compact e ⊂ C, there is a unique function, ψ, called the
Ahlfors function which maps C ∪ {∞} \ e to D which
vanishes at ∞ maximizes the “derivative” at ∞ among all
such functions. In this case, ψ has one sided continuations
to e with values in ∂D. ∆ is just the composition of the
Jurkowski map z 7→ z + z−1 with ψ. When e ⊂ R,
Pommeranke (1960) has an explicit formula for the Ahlfors
function and that is where our formula for the Yuditskii
discriminat comes from.
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Yuditski Discriminant: Existence

Let e = ∪`+1
j=1[αj , βj ] and define

G =

√√√√`+1∏
j=1

z − βj
z − αj

where we take the branch of the square root which is 1 at
∞. G is pure imaginary on e with value 0 at the tops and
∞ on the bottoms of bands. The function ψ = 1−G

1+G (which
is the Ahlfors function) maps e to ∂D and is 1 are the tops
of the bands and −1 at the bottoms. Thus

∆(z) = ψ(z) + ψ(z)−1 =
2 +G(z)2

1−G(z)2

has the required properties of the Yuditskii discriminant.
Moreover, for A > 0, B ∈ R, cj ∈ (βj , αj+1), dj > 0

∆(z) = Az +B +
∑̀
j=1

dj
cj − z
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One-Sided GMP Matrices

If J ∈ Te and ∆ is the Yuditskii discriminant of e, then
∆(J) clearly has spectrum [−2, 2] with multiplicity
N ≡ `+ 1 and it is can be shown to be purely a.c. so it is
unitarily equivalent to SN + S−N .

But since (J − cj)−1 is
not finite width, they cannot be equal. The key is to find an
orthonormal basis in which J and (J − cj)−1, j = 1, . . . , `
are all of width 2`+ 1.

This issue has been addressed in related but distinct
contexts, perhaps most famously for the CMV matrix. In
that case, for general OPUC, multiplication by z, denote it
by U in the OPUC basis has only one diagonal below but
generally infinitely many diagonals above. But, if instead,
one orthonormalizes {1, z, z−1, z2, z−2, . . . }, both U and
U−1 = U∗ have only two non-zero diagonals below, so the
CMV matrix is 5-diagonal.
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It also arose earlier in the study of the strong moment
problem – i.e. finding a measure dµ with specified values of∫
xndµ(x) where now n runs from −∞ to ∞. The key

again is to orthonormalize {1, x, x−1, x2, x−2, . . . } which
yields a 5-diagonal matrix M where M−1 is also 5-diagonal.

Given real numbers {cj}`j=1 ≡ C, and a half line Jacobi
matrix with associated measure, dµ of compact support in
R \ C, we orthonormalize the set
{1, (x− c1)−1, . . . , (x− c`)−1, x, (x− c1)−2, . . . } in L2(dµ)
and write J in this new basis. The resulting matrix, A(J), is
called a GMP (for generalized moment problem) matrix by
Yuditskii. A(J) has no more than N diagonals below and
so, by Hermiticity, it is 2N + 1-diagonal. Its block Jacobi
blocks have a special structure which we will not go into
although it is very important in further details. Moreover,
(A(J)− cj)−1 is also 2N + 1-diagonal so ∆(A) is also!
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Two-Sided GMP Matrices

Given a two sided Jacobi matrix, J , if J+ is half line Jacobi
matrix as above, then Yuditskii constructs a two sided
2N + 1-diagonal matrix, A(J), unitarily equvalent to J ,
with (A(J)− cj)−1 also 2N + 1 and so that its half line
piece if A(J+).

The construction seems a little ad hoc but
is based on what happens in the functional model that I
hope to get to at the end.

One fact we mention immediately is that if J ∈ Te, then
A(J) is periodic with period-N .
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Yuditskii Magic Formula

At this point, we have all the tools for Yuditskii’s Magic
Formula:

∆(A(J)) = SN + S−N ⇐⇒ J ∈ Te

That elements of the isospectral torus obey the magic
formula follows from looking at the functional model. The
converse is similar to the DKS argument – the magic
formula implies A(J) is periodic and that is enough to get
J ∈ Te.
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Isospectral Torus Flow

The isospectral torus, Te, has several structures that we
need notation for to state Yuditskii’s extension of the
Killip–Simon theorem to general finite gap sets.

Since it is a
manifold it has a metric, ρ – for example any of the dn’s of
DKS will work. We define functions, A and B on Te by
J 7→ a0 J 7→ b0. Finally, there is a natural map

T : Te → Te so that an(TJ) = an+1(J) bn(TJ) = bn+1(J)

A half-line Jacobi matrix is said to be in the Yuditskii class
for a finite gap set, e, if and only if

an = A(TnJn) + δan bn = B(TnJn) + δbn

for Jn ∈ Te with
∑
ρ(Jn, Jn+1)2 <∞ and {δan, δbn} in `2.
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Yuditskii’s Theorem

Yuditskii Theorem Let dµ(x) = f(x) dx+ dµs with
Jacobi parameters {an, bn}∞n=1. Then

J lies in the Yudiskii class for e

if and only if
(i) (Blumental–Weyl) σess(J) = ess supp(dµ) = e,
(ii) (Lieb–Thirring)

∑
E∈σ(J)\e(dist(E, e))

3/2 <∞.

(iii) (Quasi-Szegő)
∫

(dist(x,R \ e))1/2 log
(
f(x)

)
dx <∞.

As in DKS, it is easy to go from the spectral conditions to
∆(A(J))− 1 in Hilbert-Schmidt. All the hard work (and it
is considerable!) is in proving this is equivalent to being in
the Yuditskii class.
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The Free Jacobi Matrix

We begin by describing the functional model for the case
e = [−2, 2] where the isospectral torus has one element with
an ≡ 1 and bn ≡ 0.

Consider first H2. The function
1 ∈ H2 has 〈1, f〉 = f(0) so H2 = [1]⊕ zH2. Iterating,
we find that H2 = [1]⊕ · · · ⊕ [zn]⊕ zn+1H2 and the
orthonormal basis {zn}∞n=0.

The Joukowski map z 7→ x(z) ≡ z + z−1 is the conformal
map of D to C ∪ {∞} \ e that also takes ∂D to e. Thinking
of H2 as a set of functions on circle and P+ as the
projection onto it, P+x(z) is a self adjoint operator. In the
above basis, it is exactly the free Jacobi matrix.

By allowing zn for n < 0, we get a basis for L2 and in this
basis, multiplication by x(z) is the two sided free Jacobi
matrix.
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The Fuchsian Group Picture

We owe to Sodin–Yuditskii [SY1997] a lovely way of
organizing the multivalued analytic functions we saw were
critical to Widom’s view of Szegő asymptotics. Let
Ω ≡ C ∪ {∞} \ e.

By the uniformization theorem its
universal covering space is D and the deck transformations
are analytic bijections of D. Thus, there is a realization of
the fundamental group of Ω as a group, Γ, of Möbius
transformations (aka Fuchsian group) and a map x(z)
mapping D→ Ω, a local bijection so that

x(z) = x(w) ⇐⇒ ∃γ ∈ Γ so that γ(z) = w

Multivalued character automorphic functions, g, lift to
functions, f on D so that for some χ ∈ Γ∗, we have that
f(γ(z)) = χ(γ)f(z). Here Γ∗ is the character group of Γ.
Since Γ is the free group on `-generators, its abelianization
is Zn and thus Γ∗ is an ` dimension torus.
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Blaschke Products

It is a basic fact about these groups that∑
γ∈Γ 1− |γ(w)| <∞ for any w ∈ D so if b(z, w) is a

standard Blaschke factor, one can form
Bw(z) =

∏
γ∈Γ b(z, γ(w)).

Such products are invariant in
w under the action of Γ but are only character automorphic
in z with character which we denote by χw. − log |Bw(z)|
is thus automorphic and so there is a function G(x, y) on
Ω× Ω with |Bw(z)| = exp (−G(x(z), x(w))).

This means that for y fixed G(x, y) is harmonic on Ω \ {y}
with a logarithmic pole at y. It is positive on Ω and goes to
zero on e. It is thus what is known as the (potential
theoretic) Green’s function with pole at y. In particular, this
shows that B0(z) is the lift to the universal cover of the
function we called Be(x) in the third lecture. It also shows
that limz→0 x(z)B0(z) = C(e).
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Blaschke Products

One beautiful formula noted by Yuditskii involves the lift,
Ψ, of the Ahlfors function, ψ, to D (i.e. Ψ(z) = ψ(x(z)))
and points ζj with x(ζj) = cj .

One has that:

Ψ(z) = B0(z)
∏̀
j=1

Bζj (z) χ0

∏̀
j=1

Bχζj = 1

This is proven by noting that
exp

(
−Ge(x)−

∑`
j=1G(x, cj)

)
vanishes at the same

points of Ω as |ψ(x)| and has boundary value 1 on e. This
means the difference of the logs is harmonic on Ω with
removable singularities at the cj and ∞ and vanishes on e,
so everywhere. Lifting to D yields the above.
When one looks at the functional model for A(J) with
J ∈ Te (which we won’t have time for!), the formula above
implies that ψ(A(J)) = Sn which shows that all J ∈ Te
obey the magic formula.
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Functional Model for Isospectral Torus

For this last topic, let’s shift to an additive view of Γ∗ and
use µ for the character of B ≡ B0. Now let Hα be the set
of elements in H2 which are character automorphic with
character α.

Since f 7→ f(0) is continuous on Hα, there
exists kα ∈ Hα so that 〈kα, f〉 = f(0). (More generally
there is a full reproducing kernel which is useful in further
developements.) Thus ‖kα‖2 = kα(0) so
k̃α(z) = kα(0)−1/2kα(z) is a unit vector.

Notice that {f ∈ Hα|f(0) = 0}⊥ includes k̃α. Also notice,
that if f is in the set whose orthogonal complement we just
wrote, then B−1f lies in Hα−µ so Hα = [k̃α]⊕BHα−µ.
Therefore if we define eαn ≡ Bnk̃α−nµ, we see that {eαn}∞n=0

is an orthonormal basis for Hα.
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Therefore if we define eαn ≡ Bnk̃α−nµ, we see that {eαn}∞n=0

is an orthonormal basis for Hα.
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For this last topic, let’s shift to an additive view of Γ∗ and
use µ for the character of B ≡ B0. Now let Hα be the set
of elements in H2 which are character automorphic with
character α. Since f 7→ f(0) is continuous on Hα, there
exists kα ∈ Hα so that 〈kα, f〉 = f(0). (More generally
there is a full reproducing kernel which is useful in further
developements.) Thus ‖kα‖2 = kα(0) so
k̃α(z) = kα(0)−1/2kα(z) is a unit vector.
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Similarly, if we define eαn for negative n also and Lα as the
character automorphic functions in L2(∂D) (using the fact
that the γ ∈ Γ have a meromorphic or anti-meromorphic
extension to C),

{eαn}∞n=−∞ is an orthonormal basis for Lα.

By construction, eαn is orthogonal to all functions in Hα
that vanish to order n+ 1 at zero, so for any m > n and
g ∈ Hα−mµ, we have that 〈eαn, Bmg〉 = 0 and that
〈eαn, Bng〉 = g(0)(kα(0))−1/2.

x(z) isn’t quite an automorphic functions since it has poles
at {γ(0)}γ∈Γ but B(z)x(z) is character automorphic. It
follows that for j > 1, 〈eαn−j , x(z)eαn〉 = 0 and that:

〈eαn−1, x(z)eαn〉 = aαn−1 ≡ C(e)

√
kα−(n−1)µ(0)

kα−nµ(0)
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Since multiplication by x(z) is self-adjoiont on Lα (since
the function is real on ∂D), we see that multiplication by
x(z) is tridiagonal in the {eαn}∞n=−∞ basis.

The a’s are
almost periodic by the explicit formula above and it is easy
to see so are the b’s. The boundary values of x(z) on ∂D
are points in e so the spectrum of the matrix is e. Thus we
get a set of such matrices indexed by Γ∗ which is a torus of
dimension `. This is another model of the isospectral torus
which plays a role in the further analysis.
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