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div(v(z)Vu(z)) =0 ~(z) = conductivity,

u‘(’?Q = f f = voltage potential at 052

Current flux at 992 = (u-qu)‘aQ were v is the unit outer normal.

d ¥V

Information is encoded in

(D
! A (f) = v V|

a6

EIT (Calderdn’s inverse problem)

Does Ay determine ~ 7

N~ = Dirichlet-to-Neumann map



Reduction to Schrodinger equation

div(AVw) =0
U = \/yw

Then the equation is transformed into:

CNu—0.4= VY
(A —q) 0,q o

(A —q)u=0
u‘aQ:f

ou

Define Aq¢(f) = 506

v = unit-outer normal to 0f2.



COMPLEX GEOMETRICAL OPTICS

(Sylvester-U) n > 2, g € L°°(Q2)
Let pe C"” (p =n+ik,n,k € R™) such that p-p=0
(In| = |kl,n -k =0).

Then for |p| sufficiently large we can find solutions of
(A —q)w, =0 on Q
of the form

wp = e P(1 + Wy(z,p))

with W, — 0 in 2 as |p| — oo.



PARTIAL DATA PROBLEM

Suppose we measure

Ay(f)|r, suppf CT’
[, I’ open subsets of 9N

Can one recover ~7

Important case I ="',



EXTENSION OF CGO SOLUTIONS

w=e"P(1+ Wy(z, p))
peCp-p=0
(Not helpful for localizing)
Kenig-Sjostrand-U (2007),
u = e P@TW(@) (1) + R(z, 7))

T €R, ¢,y real-valued, R(z,7)— 0 as 7 — co.
@ limiting Carleman weight,

Ve -Vip =0, |[Vo|= |V
Example: ¢(x) =In|z —xg|, xg & ch(2)



CGO SOLUTIONS

w = e™P@)FT@) (40 (2) + R(z, 7))
R(z,7) =30 in Q

e(x) = Injz — x|

Complex Spherical Waves

Theorem (Kenig-Sjostrand-U) 2 strictly convex.

Ngy| - = Ngo [ C 92, [ arbitrary

=l

= 41 = Qg2



Theorem (Kenig-Sjostrand-U) 2 strictly convex.

[ C 02, [ arbitrary

AQl — /\QQ r’

-

= q1 = q2
Ur = eT(‘P_I_W)aT p(z) = In |z — zol, 20 §ch(£2)

Eikonal: Ve V¢ =0, |Ve| = |V
P(z) = d(‘i £0|,w),w e S 1. smooth “

for x € Q.
Transport: (Ve +iVy) - Var =0
(Cauchy-Riemann equation in plane generated by Vi, V)



p(z) = Inlz — 20|, zo &ch(2)

Carleman Estimates

>
ulgo = %bg_ =0 02+ = {x € 02; Vp - v < 0}

/8 . <w,y>|e—w<w>au|2ds< /|<A_q>ue—w<w>|2ds
_|_

This gives control of %lag+,5,

0L s ={r €0, Vyp- v =>4}



More general CGO solutions
wr = TPty

7> 0, 7= 1/h (semicl.), ¢, real-valued

e © is a limiting Carleman weight
ehh2(—A + q)eh

has semiclassical principal symbol

Py(z,8) = &% — (Vg)* 4 2iVep - ¢
Hormander’'s condition:

{Re P,,Im P,} <0 on P,=0
We need ¢, —¢p to be phase of solutions.

LCW : {Re P,,Im Py} =0

Ve # 0 in an open neighborhood of €.



1 .
CGO solutions  wuy, = eE(S‘)‘H‘b)ah
e o LCW, ¢ real-valued

Vo # 0 on an open neighborhood of .

Examples (Dos Santos Ferreira-Kenig-Salo-U, 2009)

(@) p(z) =x-§ E€R?, [ =1

(b) () = aln|z — zg9| + b, (a,b constants), zg &ch()

<'CU — ZL0; £>

(©) pl@) =770

+0b, £ € R"

(d) ¢p(x) = aarctan |x2_<i(;§(1’|5§>|2 +b

(e) o(z) = aarctanh|x2_<i;‘§fi’fg|2 +b

(f) n =2, ¢ is a harmonic function
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Instead of
21x-k
der =0
/Qe q(x)dx

kL& (£es 1) as in Bukhgeim-U argument we get

/Q A (@) g(x) lajardr =0

A any real number, a1,a> 7= 0, f(x) real-analytic, aq,ao real analytic

Analytic microlocal analysis = ¢ = 0 (like inversion of real-analytic Radon
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Linearization (Analog of Calderon)
Theorem (Dos Santos Ferreira, Kenig, Sjostrand-U)

/huv:O
Q

[ C 0€2, [ open,

Au=Av=0, u,v€C®N),

SuUpp ulgn, SUPP vlgo C I,

= h=0.
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Complex Spherical Waves
wr = e (PT)

p(x) = In|x —z0|, zg & ch(£2)

Also used to determine inclusions, obstacles, etc.

a) Conductivity Ide-Isozaki-Nakata-Siltanen-U
b) Helmholtz Nakamura-Yosida

c) Elasticity J.-N. Wang-U

d) 2D Systems J.-N. Wang-U

e) Maxwell T. Zhou
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Complex Spherical Waves

(Loading reconperfectl.mpg)
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reconperfect1.mpg
Media File (video/mpeg)


The Two Dimensional Case

Theorem (n = 2) Let v, € C?(Q), j =1,2.

Assume Ay = Ay, . Then [y =72

e Nachman (1996)
e Brown-U (1997) Improved to v; Lipschitz
e Astala-Pdivarinta (2006) Improved to v; € L°°(£2)

Recall

div(AVu) =0, ~ € L*®°(Q)
ulpq = f

Qy(f) = /QWIVUIQCZ@“ = (M S £ r200)-
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T his follows from more general result

Theorem (n = 2, Bukhgeim, 2008) Let ¢; € L*°(2), 7 = 1,2.

Assume Ay = ANy, Then g1 = qo|.

Recall

ulpq = f. NalF) =

gLle!
with v-unit outer normal.
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Ngg =Ngp = q1=q

Sketch of proof New class of CGO solutions

ui(z, 1) =™ (1 + r1(z, 7))

_ 1
ur(z,7) = e (14 1a(z,7))

solve (A — g;)u; = 0 with r;(z,7) — 0 on €2 sufficiently fast.

Notation z=x1 + 12>

Remark 22 = az% — :13% + 2ix1x0 = © + 1Y
Vo -V =0, [Vy|=I|Vy

¢ harmonic, @ conjugate harmonic.

17



Ngy = Ngp = /Q(fﬂ — g2)uiupdr =0

(A —gqj)u; =0

- (1+7r1(z,7)), ux= e T (1 +72(2,7))

uy =€’
Substituting
/Q(cn — qz)€4im1$2(1 +r1+ro 4+ r17ro)dx = 0.

Letting m — oo and using stationary phase

(g1 —q2)(0) = 0.

Changing z to z — zg we get

(91 — g¢2)(20) = O.
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Partial data

Let T C 02, [T open.
Let ¢; € C1T2(Q), e >0, j =1,2.

Theorem (Imanuvilov-U-Yamamoto 2010) n=2. Assume

/\Q1(f)’|- = /\qz(f)’l_

V f, suppf CI'. Then

q1 — 492

e Riemann Surfaces: Guillarmou-Tzou (2011)
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Partial data [0 =002 —1T

Construct CGO solutions

AUj — qjuj = 0O in 2
ujlrg =0

In this case

/Q(Cn — go)ujusdr =0

it Agy (f)Ir = Ao ()|, suppf CT.
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_ — O
/Q((ﬂ q2)uiu

ujlr, = ujlo—r =0

U]_(af) — GTCD(Z)(CL(Z) 4+ CLO(Z)) + GTCD(Z)(CL( )—'— CL]_(Z)) 4 TSOR(]-)

ua() = e *O(@() + 2 4 e r () + 1) 4 oR®

® = v+ i) holomorphic
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u; = Re PG (a(2) +---), wusr=Re e "®E)(a(2) +--+)

d(z) = 44 holomorphic

ujlo—r =0

p € Q, & has non-degenerate critical point at p (Morse function)
and Im® = 0 on . Notice that this implies V¢ -v =0 on [g.

5& = 0 Re ang_r =0

a = 0 at other critical points

Stationary phase in

_ —0
/Q((n q2)U U
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u1 = Re eTCD_(Z) (a(z) +---)
ur = Re e ") (G(2) + -+ +)
ujlo—r =0

d(z) Morse function with non-degenerate critical point at p.

— Uu1U> = O
/Q(Q1 qo)uiup =
Stationary phase

= (q1 —q2)(p) =0

23



Corollary: Obstacle Problem

Q,D C R? : smooth boundary
such that D C Q.
V C 02 . open set.

Let q; € CQ"'O‘(Q\D) for some a >0, 5 =1,2.

(Zb = {(u|v,8,/u|v); (A —gj)u=0in Q\D

supp ulgo C V,u € Hl(Q\D)}
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Carleman Estimate With Degenerate Weights

Lemma

Let 02 — T ={x € 02; v-Vp =0}. Then for 7 sufficiently large, 3
solution of

Au—qu=Ff in £
ulpo-r =g

such that

el 2y < € (117210l 2y + lge™ Il 2(ry
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CASE OF DISJOINT SETS:
Theorem (Imanuvilov-U-Yamamoto, 2011)

Let Cq = {(ulr,, (%)(r_) (A —q)u=0in Q,

ulrur_ = O,u € Hl(Q)} Assume gq; €
C2ta(Q) and
Cqy = Cq
then
q1 — 42
where
2 4
re= U+, To= U Mok
j=1 k=1

oriented clockwise.
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CASE OF DISJOINT SETS:

Figure 1 of Imanuvilov-U-Yamamoto (2011)
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Partial Data for Second Order Elliptic Equations (n = 2)
(Imanuvilov—U—Yamamoto, 2011)

0 0
Ag+A(z)$—I—B(z)£—|—q z =11 +122

g = (g4;) positive definite symmetric matrix;

1 )
Agu = det Z] ij — Z,,—l
g Tet(g)” o (\/ et(g)g g (9i5)

Includes|:
e Anisotropic Calderon’s Problem
e Magnetic Schrodinger Equation

e Convection terms
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Anisotropic case

Cardiac muscle 6.3 mho (longitudinal)
2.3 mho (transversal)

v= (fy’ij) positive-definite, symmetric

conductivity matrix

2 C R", Q2bounded. Under assumptions of no sources or sinks of
current the potential u satisfies

"9 20U .
div(yVu) =0 Z Ox; (7]33%‘) —oine (*)

ij=1
“‘asz =f

f = voltage potential at boundary

Isotropic Y (x) = ax)d"; oY = {o, P

29



n . .
v 2 (%) —oina
ze- aCUj

1,j=1
“‘aQ =7
no . Hu \
AM(f) = Z vyt £
i,j=1 Yilaq 3
%
v = (1/1,--- ,u") is the unit outer normal to Q2

A~(f) is the induced current flux at 0€2.

(*)

N\~ is the voltage to current map or Dirichlet - to - Neumann map
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"0 ou .
Z ox; (fy ox ; ) =01in <2 (%)
“‘aQ =/

n 8u

/\”y(f): Z ’/7 8

i =1

Tiloq

EIT: Can we recover v in €2 from Ay 7

31



; Ou

div(yVu) =0

N (f) = Z’V 8w33§2 Ny = 77

u‘agz =f ij=1

Answer: No Nopoy = Ny

where ¢ : 2 — €2 change of variables

Y| = Identity

_ (DY) ovyo Dy 1
w*’v—< det Dy )Ow

vzuO?p—l
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Theorem (Imanuvilov—U-Yamamoto, 2011) € C R2, T C 9, I
open, v = (v7) € C®°(Q),k = 1,2, positive definite symmetric.
Assume

Ny (DlF = Np(Hlrs VS suppf CT.
Then 3F : Q — Q, C* diffeomorphism, F|r = Identity such that

Fxy1 = 2.
Full Data (I" = 992):

e v, €C?%(Q), Nachman (1996)
e ;. Lipschitz, Sun—U (2001)
o v € L°°(2), Astala—Lassas—Pavadrinta (2006)
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DIRICHLET-TO-NEUMANN MAP (Lee-U, 1989)

(M, g) compact Riemannian manifold with boundary.
Ay Laplace-Beltrami operator g = (g;;) pos. def. symmetric matrix

1 "0 - 0u -
qgu Jet g Z o, (‘\/ g9 s ) (9%) (ng)

ij=1 j

4 V

Agu=0onM i Conductivity:
’U,‘aM = f 1 ,ij p— w/detggij

J0

no 9y
N(f) = > vIgh oy detyg

i.j=1 i

oM
v = (vl ... v") unit-outer normal

34



u‘aM =/
ou n . . Ou
N\ = — = J g% det
q(f) vy 7;,]2::1 v’ g axi\/ g .

current flux at oM

Inverse-problem (EIT)
Can we recover g| from Ag 7

Ng = Dirichlet-to-Neumann map or voltage to current map
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ANOTHER MOTIVATION (STRING THEORY)

HOLOGRAPHY pNY

N

g

Dirichlet-to-Neumann map is the “boundary-2pt function”

Inverse problem: Can we recover (M, g) (bulk) from boundary-2pt function
?

M. Parrati and R. Rabadan, Boundary rigidity and holography, JHEP
0401 (2004) 034
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Agu =20 ou
T No(f) =~ Ng=g 7
Uy = f Yalom
Answer: No Nyxg = Ng Where

Y. M — M diffeomorphism, w‘aM — Identity and

Y*g = (Dypogo(Dy)") oy

37



Show /\w*g = Ng; ¥ : M — M diffeomorphism, w‘aM — Identity

Qu(f) =i j Inr 97 55 5/ et gdo

Qo() == [, Ng(f)fdS

Qg & Ng
v=wuoy, Dyxv =20

Qurg = Qg = Nyrg =g
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Theorem (n > 3) (Lassas-U 2001, Lassas-Taylor-U 2003) (M, g;),1 =
1,2, real-analytic, connected, compact, Riemannian manifolds with
boundary. Let T C OM, ' open. Assume

Ng1(O)r = Ngo(H)lr, . VS, f supported in I

Then 3 : M — M diffeomorphism, w\r — Identity, so that
g1 =Y go

In fact one can determine topology of M, as well (only need to know
Ng,OM).
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Theorem (Guillarmou-Sa Barreto, 2009) (M,g;),7 = 1,2, are com-
pact Riemannian manifolds with boundary that are Einstein. As-
sume

Ngy = Ngy
Then 3y : M — M diffeomorphism, ¥|g5y; = Identity such that
g1 =Y go

Note: Einstein manifolds with boundary are real analytic in the
interior.
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Theorem (n = 2)(Lassas-U, 2001)

(M, g;), i = 1,2, connected Riemannian manifold with boundary.
Let T C OM, [T open. Assume

Ng1()r = Ngo (DI, VS, f supported in I

Then 3 : M — M diffeomorphism, ¢|I_ — Identity, and
B>O,BI_:1 so that

g1 = By go

In fact, one can determine topology of M as well.
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Moding Out the Diffeomorphism Group

Some conformal class Ngg=1Ng, BeC®(M)
= =17

More general problem

(Ag—q@u=0, g€ C>®(M)
ulgnr = f,

Ng(f) = Gitlom

Inverse Problem: Does A4 determines ¢ 7

42



(Bg—@u=0,  Ag(H)=gGtlorr, Ng— a7

Theorem (n=2) (Guillarmou-Tzou, 2009)
YES

Earlier results:
e R2, ¢ small (Sylvester-U, 1986)
e R2, ¢ generic (Sun-U, 2001)

e R2 ¢g= %X,w > 0 (Nachmann 1996)

e Riemannian surfaces, ¢ = %X,v > 0, (Henkin-
Michel, 2008)

e gc L, (Bukhgeim, 2008)
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MODING OUT GROUP OF DIFFEOMORPHISM
(n > 3)

(Ag—q@u=0, g€ C®(M)
ul@M — ];7
Ng(f) = a—,fbg|aM-

) s =@ (§ 00 ) e>0

Theorem (Dos Santos-Kenig-Salo-U) Assume that there is a global
coordinate system so that (*) is true. In addition [gg!| is simple.

Then Ay determines uniquely q|.

Simple: NoO conjugate points and strictly convex.

44



g(xl,x’>=c<m>(é QO&,)), o € R

Examples

(a) g(x) conformal to Euclidean metric (Sylvester-U, 1987)

(b) g¢g(xz) conformal to hyperbolic metric (Isozaki, 2004)

(c) g(x) conformal to metric on sphere (minus a point)
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Non-uniqueness for EIT (Invisibility)

Motivation (Greenleaf-Lassas-U, MRL, 2003)

N When bridge connecting the two parts
N of the manifold gets narrower the
| boundary measurements give less infor-

mation about isolated area.

When we realize the manifold in Euclidean space we should obtain

conductivities whose boundary measurements give no information
about certain parts of the domain.
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g = identity metric in B(0,2)
Let §= (F1)*q on B(0,2)\ B(0,1)
o = conductivity associated to g

In spherical coordinates (r,¢,0) — (rsin8cos ¢, rsinfsin ¢, r coso)

2(r —1)2sin 0

0
o= 0 2sin6 O
0 0 2(sing)~!
Let g be the metric in B(0,2) (positive definite in B(0,1)) s.t. g =g
in B(0,2)\ B(0,1). Then

Theorem (Greenleaf-Lassas-U 2003)
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Based on work of Greenleaf-Lassas-U, MRL

2003
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