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These lectures are conceived as a survey of selected theoretical
results about quantized vortices in dilute, ultra-cold Bose gases under
rotation, including a discussion of the giant vortex phase transition at
sufficiently rapid rotation in an anharmonic trap. Most of the results
presented have been obtained in collaboration with Michele Correggi
and Nicolas Rougerie.

Vortices in rotating quantum gases are a fascinating manifestation of
superfluidity. Their mathematical study involves methods from
variational calculus and the theory of nonlinear, elliptic PDE’s.

On the experimental side, sophisticated cooling and trapping
techniques have led to the possibility of producing ultra-cold gases of
alkali atoms exhibiting Bose-Einstein Condensation (BEC) and vortices
in laboratories since the mid 1990’s. The experimental and theoretical
study of quantum gases is one of the most active areas in condensed
matter physics and a separate sub-topic on the ArXiv.
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OVERVIEW

1. The Concepts of a Vortex and Vorticity

2. The Basic Many-Body Hamiltonian

3. Gross-Pitaevskii Theory

4. The Case of a ‘Flat’ Trap

5. The Case of a ‘Soft’ Anharmonic Trap
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Vortices in Fluid Dynamics

Consider a fluid with velocity field v(x). The circulation around a

closed loop C enclosing a domain D is, by Stokes,∮
C

v · d` =

∫
D

(∇× v) · n dS.

Hence nonzero circulation requires that the vorticity

∇× v

is nonzero somewhere in D.

A region where ∇× v 6= 0 is called a vortex.

The circulation around a vortex divided by 2π is called the degree of
the vortex.
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A bathtub vortex 









Quantum vortices 



Creation of quantized vortices 
in a rotating container 





Rotational and irrotational 
vortices 



Basic facts about quantum 
vortices 

  Quantum vortices are irrotational, the vorticity 
is concentrated in vortex lines (vortex points 
in 2d). 

  Vorticity is quantized in units of h/m. 
 This was probably first realized 
 by Lars Onsager (1903-1976)  
 in 1949. 



Quantization of Vorticity in a Superfluid

Describe the superfluid by a complex valued function (”order
Parameter”) ψ satisfying a nonlinear Schrödinger Equation
(Gross-Pitaevskii equation). The phase of ψ determines the velocity: If
ψ = eiϕ|ψ| then

v =
~
m
∇ϕ.

Since ψ is single valued we have
∮
C ∇ϕ · d` = n 2π with n ∈ Z, so∮

C
v · d` = n

h

m
.

On the other hand, where the phase is nonsingular, i.e., where
|ψ(r)| 6= 0, we have

∇× v = 0.
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The Superfluid Current Density

To understand why v = (~/m)∇ϕ is the superfluid velocity note that a

time-dependent non-linear Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + F (ψ)ψ

implies the continuity equation

∂ρ/∂t+∇ · J = 0

with the density ρ(x) = |ψ(x)|2 and the superfluid current density

J =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗).

The interpretation of v = (~/m)∇ϕ as velocity follows from

J(x) = ρ(x)v(x).
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The Basic Many-Body Hamiltonian

The quantum mechanical Hamiltonian for N spinless bosons with a

pair interaction potential v and external potential, V , in a rotating frame

with angular velocity Ω is

H =

N∑
j=1

(
−1

2∇
2
j + V (xj)− Lj ·Ω

)
+

∑
1≤i<j≤N

v(|xi − xj |).

Here xj ∈ R3, j = 1, . . . , N are the positions and Lj = −i xj ×∇j the

angular momentum operators of the particles. Units have been chosen

so that ~ = m = 1 and thus h/m = 2π.

The pair interaction potential v is assumed to be radially symmetric, of

short range, and repulsive.

H operates on symmetric functions in L2(R3N ).
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Hamiltonian, Magnetic Version

The Hamiltonian can alternatively be written in the form

H =

N∑
j=1

(
1
2 [i∇j + A(xj)]

2 + V (xj)− 1
2Ω2r2

j

)
+

∑
1≤i<j≤N

v(|xi − xj |).

with

A(x) = Ω× x = Ωr eθ

and r=distance from the rotation axis.

This corresponds to the splitting of the rotational effects into Coriolis

and centrifugal forces. The Coriolis force has formally the same effect

as a constant magnetic field B = 2Ω with vector potential A(x).
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Harmonic vs. Anharmonic Traps

If V is harmonic in the direction ⊥ to Ω, i.e.,

V (x) = 1
2Ωtrapr

2 + V ‖(z)

then stability requires Ω < Ωtrap. Rapid rotation means here that

Ω→ Ωtrap

from below.

If V is anharmonic and increases faster than quadratically in the

direction ⊥ to Ω, e.g. V ∼ rs with s > 2, then rapid rotation means

simply Ω→∞.
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Gross-Pitaevskii Equation

Basic fact (E. Lieb and R. Seiringer, 2005) about the the many-body

Hamiltonian for N →∞ with Na and Ω fixed, where a is the scattering

length of the interaction potential v:

There is Bose-Einstein condensation in the many-body ground state

as N →∞. Moreover the ground state is a superfluid, and the wave

function of the condensate is the superfluid order parameter. It satisfies

a non-linear Schrödinger equation, the Gross-Pitaevskii equation

[
1
2(i∇+ A)2 + (V − 1

2Ω2r2) + 4πNa|ψ|2
]
ψ = µψ .

The limit N →∞ with Na and Ω fixed is called the GP limt.
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Digression: Scattering Lenght

Zero energy scattering equation for the two particle scattering with a

potential v:

−~2

m
∇2ψ + vψ = 0.

Writing ψ(x) = u(r)/r with r = |x| this is equivalent to

−~2

m
u′′(r) + v(r)u(r) = 0.

For r larger than the range of v the solution with u(0) = 0 has the form

u(r) = (const.)(r − a)

with a constant a that is called the scattering length of v. Equivalently,

a = lim
r→∞

[
r − u(r)

u′(r)

]
and this is finite if v decreases at least as r−(3+ε) at infinity.
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Scattering Lenght (cont.)

For ψ(x) = u(r)/r we have thus outside of the support of v

ψ(x) = (const.)
(

1− a

r

)
.

If v ≥ 0, then also a ≥ 0, but a ≤ range of v. For a hard sphere potential
a is equal to the radius of the sphere.

If v is not positive then a can be negative and if −~2
m∇

2 + v has bound
states, then a can be much larger than the range of v.

If v ≥ 0 then

4π~2

m
a = inf

ψ

∫ {
~2

m
|∇ψ|2 + |ψ|2v

}
d3x

where the infimum is over all differentiable ψ that tend to 1 at infinity.
This implies in particular

a ≤ m

4π~2

∫
v(r) d3x.
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Digression: The Concept of BEC

One-particle density matrix of an N -particle wave function Ψ:

ρ(1)(x,x′) = N

∫
Ψ(x,x2, . . .xN )Ψ(x′,x2, . . .xN )∗dx2 · · · dxN .

Spectral decomposition:

ρ(1)(x,x′) =
∑
i

λi ψi(x)ψ∗i (x
′)

with λ0 ≥ λ1 ≥ . . . and orthonormal ψi.

BEC in the state Ψ means, by definition, that λ0 = O(N).The function
ψ0 is the called the wave function of the condensate.
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Digression: The Concept of BEC (cont.)

We shall always be considered with ground states of the many-body
Hamiltonian in the rotating system, and a slight complication arises
beacse the ground state is in general not unique in a rotationally
symmetric potential. This is due to the appearance of vortices that
break this symmetry if there is more than one vortex.

A generic ground state, therefore, need not show condensation into a
single wave function, but rather a fragmented condensation, where
many states may have an occupation O(N). It can be shown, however,
that in the GP limit, the limit points of one-particle density matrices of
ground states form a simplex whose extremal points are projections
onto solutions of the GP equation.

A slight perturbation of a rotationally symmetric potential can also
render the ground state unique, in which case BEC in the usual sense
of macroscopic occupation of a single state holds.
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The Gross-Pitaevskii Energy Functional

The GP equation is obtained by minimizing the energy functional

EGP[ψ] =

∫
R3

{
1
2 |∇ψ|

2 + V |ψ|2 − ψ∗Ω · Lψ + 2πNa|ψ|4
}
dx

=

∫
R3

{
1
2 |(i∇+ A)ψ|2 + (V − 1

2Ω2r2)|ψ|2 + 2πNa|ψ|4
}
dx

with the normalization condition
∫
R3 |ψ|2 = 1. A minimizer, i.e., a

solution of the GP equation, will be denoted by ψGP.
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Reduction to 2D

If the external potential is strongly confining in the direction of the

rotational axis (z-direction), a 2D description is appropriate.

The same applies to the opposite case, i.e., when the trap potential is

almost constant in the z-direction. In this case 2D GP functional

describes the ground state energy per unit length in the z-direction.

The coupling constant in the 2D GP functional is in both cases

g = 2πNa/L

with L a length in the z-direction.
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Reduction to 2D (cont.)

It is custormary and convenient to write

g =
1

ε2
.

The 2D GP functional we consider is thus

EGP[ψ] =

∫
R2

{
1
2 |(i∇+ A)ψ|2 + (V − 1

2Ω2r2)|ψ|2 +
1

ε2
|ψ|4

}
d2r

We shall in particular be interested in large g which means small ε.
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The Meaning of ε

The healing length `h is defined by the condition that the kinetic energy

associated with `h equals the interaction energy per particle, i.e.,

1

`2h
∼ 1

ε2

∫
|ψ|4.

In a trap of effective radius R we have |ψ|2 ∼ R−2 by the normalization

condition, and thus ∫
|ψ|4 ∼ R−2.

Hence

ε ∼ `h/R.
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The TF density and energy

Dropping the kinetic energy term 1
2 |(i∇+ A)ψ|2 from the GP energy

functional lead to the so-called TF functional of the density ρ = |ψ|2:

ETF[ρ] =

∫ {
(V − 1

2Ω2r2)ρ+
1

ε2
ρ2

}
d2r

The minimizer under the normalization condition
∫
ρ = 1, denoted by

ρTF, is explicitly given as

ρTF(r) =
ε2

2

[
µ− V (r) + 1

2Ω2r2
]
+

where µ is a chemical potential and [·]+ denotes the positive part. The
corresponding energy is denoted by ETF.

The density ρTF essentially determines the global profile of the
condensate, while vortices are due to the term 1

2 |(i∇+ A)ψ|2.
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The Emergence of Vortices

For small Ω the condensate is at rest in the inertial system and thus

rotates (with angular velocity −Ω) in the rotating system. (This is due

to the superfluidity of the conensate; a normal fluid would rotate with

the trap and thus be at rest in the rotating system.)

The velocity operator in the rotating system is −i∇−A(r). The

constant function is for small Ω the ground state and has the velocity

distribution

v(r) = −A(r) = −Ω× r = −Ωr eθ.

The corresponding kinetic energy is exacly compensated by the

centrifugal energy −1
2Ω2r2.
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The Emergence of Vortices (cont.)

At higher rotational velocities vortices may partly compensate the term

−A of the velocity and hence reduce the kinetic energy. This reduction

is necessarily accompanied by a redistribution of the density and

hence some increase in interaction energy which determines the size

of the vortex cores.

Consider the case of small ε and a trap with effective radius R. A

vortex of degree d located at the origin, can be approximated by the

ansatz

ψ(r, θ) = f(r) exp(iθd)

with

f(r) ∼


rd if 0 ≤ r . rv

R−1 if rv . r ≤ R
where rv is the radius of the vortex core where the density is small.
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The Emergence of Vortices (cont.)

The component of the velocity in the direction of eθ is

v(r)θ =

(
d

r
− Ω r

)
.

The change in kinetic energy compared to the vortex free case, d = 0,
has a cost term and a gain term:

∆Ekin ∼ R−2

∫ R

rv

[(d/r)2 − 2dΩ] r dr +O(1)

= R−2d2| log(rv/R)|−dΩ +O(1).

The increase in interaction energy through the creation of the vortex is

∆Eint ∼
1

ε2
(rv/R)2.

Optimizing the total energy change w.r.t. rv gives

rv ∼ εR
and an interaction energy change ∆Eint ∼ R−2.
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The Emergence of Vortices (cont.)

The total energy change is thus

∆E ∼ R−2d2| log ε| − dΩ +O(1).

A vortex of degree d = 1 becomes energetically favorable when

R−2| log ε| − Ω +O(1) < 0

which for ε� 1 means

Ω & R−2| log ε|.

We also see that d vortices of degree 1, ignoring their interaction, have
energy ∼ d(R−2| log ε| − Ω) while a vortex of degree d has energy
R−2d2| log ε| − dΩ. Hence it is energetically favorable to ‘split’ a
d-vortex into d pieces of 1-vortices, breaking the rotational symmetry.
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The Emergence of Vortices (cont.)

Generalization:

Consider a disc of radius R, possibly much smaller than the radius of
the condensate, and with center r0 somewhere in the trap. Shifting the
origin to r0 the velocity is

v(r) =

(
d

r
− Ω r

)
eθ − Ωr⊥0

with r⊥0 · r0 = 0. If |ψ|2 = ρ on the disc we ask for the energy change if
a vortex with core radius rv is created at r0.
A computation analogous to the previous one, using that∫

(eθ · r⊥0 ) dθ = 0, leads to

rv = ερ−1/2,

and the condition for the creation of a vortex becomes

Ω & ρ | log(εRρ1/2)|.
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The Emergence of Vortices (cont.)

Remark:

While the preceeding heuristic discussion is adequate as a first

orientation, it ignores some points that are important to take into

account in a precise analysis:

Inhomogeneities of the background density are in general

significant.

When there are several vortices their long-range interaction due to

the nonlinearity of the GP functional may also be relevant.

In an inhomogeneous background, precisely defined cost functions
that go beyond the rough approximation ρ | log ε| −Ω +O(1) have to be
considered.
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The case of a ‘Flat’ Trap

Consider now a 2D ‘flat’, circular trap with rigid boundary at radius 1.

The GP energy functional is then

EGP[ψ] =

∫
B

{
1
2 |(i∇+ A)ψ|2 − 1

2Ω2r2|ψ|2 +
1

ε2
|ψ|4

}
d2r

where B is the unit disc and A(r) = Ω r eθ.

Vortices start to appear for Ω > Ωc1 = ωc1| log ε|, and it can be proved

that if Ω < ωc1| log ε|+O(log | log ε|) there is a finite number of vortices,

even as ε→ 0. For larger Ω the number of vortices is unbounded as

ε→ 0.

The vortex pattern in the regime Ω ∼ | log ε| bas been studied by M.
Correggi and N. Rougerie (2013).
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Effects of the Centrifugal Term

For Ω� | log ε| a lattice of vortices emerges, but new phenomena

appear at two additional critical velocities, namely for Ω ∼ 1/ε and

Ω ∼ 1/(ε2| log ε|) respectively.

If Ω = O(1/ε) the centrifugal term −(Ω2/2)r2|ψ(r)|2 and the interaction

term (1/ε2)|ψ(r)|4 become comparable in size and the centrifugal

forces influence the bulk shape of the condensate.

For Ω > Ωc2 = ωc2 ε
−1 the centrifugal forces deplete strongly the

density in a ‘hole’ of radius

Rh = 1− c(Ωε)−1

around the rotation axis and the bulk of the condensate is
concentrated in an annulus of thickness ∼ (εΩ)−1.
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Effects of the Centrifugal Term (cont.)

As long as Ω� 1/(ε2| log ε|), however, the annulus still contains a

lattice of vortices, but if Ω > Ωc3 = ωc3(ε2| log ε|)−1 the high density of

the condensate in the annulus make vortices too costly. A transition to

a ‘giant vortex’ state takes place where all vorticity is concentrated in

the ‘hole’ but the bulk of the condensate is vortex free.

We discuss these results in more detail in the sequel, starting with the

parameter region | log ε| � Ω� 1/(ε2| log ε|).
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The TF density profile

The appearance of a‘hole’ due to the centrifugal forces and an annulus

containing the bulk of the mass can be seen from the TF density profile

which is

ρTF(r) =
ε2

2

[
µTF + 1

2Ω2r2
]
+

for r ≤ 1 and zero otherwise. The chemical potential µTF is

determined by the normalization and can be explicitly computed.

The important features of the profile for ε� 1 are:

For Ω� ε−1 the profile is approximately flat, but for Ω & ε−1 it

becomes parabolic.

A ‘hole’ appears for Ω ≥ Ωc2 = (4/
√
π) ε−1.

For Ω� Ωc2 the support is contained in an annulus of thickness

∼ εΩ and in the radial variable the profile is approximately a

triangle of height ∼ (εΩ)−1.
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Energy for | log ε| � Ω� (ε2| log ε|)−1

Theorem (M.Correggi, JY, 2008)

Let EGP denote the GP energy, i.e., the minimum of the GP energy
functional. Let ETF denote the minimal energy of the GP functional
without the kinetic term.
If | log ε| � Ω� 1/ε, then

EGP = ETF + 1
2Ω| log(ε2Ω)|(1 + o(1)).

If 1/ε . Ω� 1/(ε2| log ε|) then

EGP = ETF + 1
2Ω| log ε|(1 + o(1)).

In both cases the energy corresponds to a uniform distribution of
vorticity in a the form of a vortex lattice.
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An electrostatic analogy

The upper bound to the energy in the Theorem is based on a

variational ansatz that can be motivated by an electrostatic analogy.

We write points r = (x, y) ∈ R2 as complex numbers, ζ = x+ iy, and

consider a lattice of points ζj . Placing a vortex of degree 1 at each

point ζj leads to a trial function for the GP energy of the form

ψ(r) = c ρ(r)1/2ξ(r) exp{iϕ(r)}

where ρ is (a possibly regularized version of) the TF density, ξ a

function modelling vortex cores around the points ζj , and the phase

factor is

exp{iϕ(r)} =
∏
j

ζ − ζj
|ζ − ζj |

.
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An Electrostatic Analogy (cont.)

Now

|(i∇+ A)ψ|2 = |∇f |2 + f2|A−∇ϕ|2

and

ϕ =
∑
j

arg(ζ − ζj).

The phase arg z of a complex number is the imaginary part of the

complex logarithm which is an analytic function on the complex plane

(suitably cut). The Cauchy-Riemann equations for the real and

imaginary part of an analytic functions imply

|A−∇ϕ|2 = |Ω rer −∇χ|2

where

χ(r) =
∑
j

log |r− rj |.
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An Electrostatic Analogy (cont.)

But

E(r) := Ω rer −∇χ(r)

has a simple physical interpretation: It can be regarded as an ‘electric

field’ generated by a uniform charge distribution of density Ω/π

together with unit ‘charges’ of opposite sign at the positions of the

vortices, rj . The integral of |E(r)|2 is the corresponding electrostatic

energy.
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Vortex Lattice

We now distribute the vortices over the unit disk so that the vorticity

per unit area is Ω/π. (This is really 2Ω ·m/h.) Thus every vortex ri sits

at the center of lattice cell Qi of area |Qi| = π/Ω, surrounded by a

uniform charge distribution of the opposite sign so that the total charge

in the cell is zero.

If the cells were disc-shaped, then Newton’s theorem would imply that

the ’electric field’ generated by the cell would vanish outside the cell,

i.e, there would be no interaction between the cells.
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Vortex Lattice (cont.)

The energy of each cell, taking into account the factor ξ(r) that cuts off

the Coulomb field from the point charge (vortex) at a radius

rv � Ω−1/2, is just

2π

∫ Ω−1/2

rv

(1/r)2 r dr +O(1) = π| log(r2
vΩ)|+O(1).

We now multiply by the density of cells, Ω/(2π), obtaining

(Ω/2)| log(r2
vΩ)|(1 + o(1)).

rv = ε · ρ−1/2 =


ε if Ω . 1/ε

(ε/Ω)1/2 if 1/ε . Ω
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Why hexagonal cells are optimal

The cells can, of course, not be disc shaped, but the closest

approximation to that are hexagonal cells, giving the optimal energy.

The vortices then sit on a triangular lattice. The interaction between

the cells, although not zero, is small because the cells have no dipole

moment.

Among the regular lattices the hexagonal cells have the lowest

multipole moments which indicates why they are preferred.

This difference between hexagonal and other regular lattices

(rectangular or triangular unit cells) is, however, a delicate higher order

effect and only shows up in higher orders than stated in the Theorem.
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The Lower Bound

The electrostatic analogy leads to a good trial function for an upper

bound to the energy, but the lower bound is more complicated. It relies

on results from Ginzburg-Landau Theory obtained by Etienne Sandier

and Sylvia Serfaty, which in turn are based on the construction of

“vortex balls” to enclose the regions where the GP minimizer is small,

combined with so-called “jacobian estimates” on the curl of the

superfluid current. Such constructions and estimates are originaly due

to Etienne Sandier and, independently, Robert Jerrard and Halil Soner.
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The Lower Bound (cont.)

Ginzburg-Landau Energy functional in a domain Q:

EGL[u,A] =

∫
Q

dr

{
|(∇− iA)u|2 + |∇ ×A− hex|2 + κ2

(
1− |u|2

)2
}
.

Here A is a variable vector potential and hex a fixed magnetic field.

Sandier and Serfaty prove for

log κ� hex � κ2

the lower bound

EGL ≥ (1− o(1))|Q|hex log
κ√
hex

.
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The Lower Bound (cont.)

To use this for the GP problem, the first step is to write

ψGP(r) = u(r)ρTF(r)1/2

that is in any case possible for

r ∈ T ≡
{
r ∈ B1

∣∣ ρTF(r) ≥ (εΩ)| log δ|−1
}

with δ ≡ ε2| log ε|Ω� 1 and δ � ε2| log ε|2.
We then get

EGP ≥ ETF + ẼGP [u]− const.(εΩ)| log ε|.

with a weighted GL-type functional and A = x×Ω:

ẼGP [u] ≡
∫
T

dr ρTF(r)

{
|(∇− iA)u|2 + ε−2ρTF(r)

(
1− |u|2

)2
}
.
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The Lower Bound (cont.)

To estimate this further, introduce a square regular lattice L with side

length ` satisfying√
| log ε|

Ω
� `� min

[
1,

1

(εΩ)| log δ|

]
.

One then obtains

ẼGP [u] ≥ (1− o(1))
∑
ri∈L

ρTF(ri) E(i)[u]

with

E(i)[u] ≡
∫
Qi

dr
{
|(∇− iA)u|2 + ε−2ρTF(ri)

(
1− |u|2

)2}
.
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The Lower Bound (cont.)

One might now be tempted to use the GL estimate of Sherfaty and

Sandier on E(i)[u], taking hex = ∇×A = 2Ωez and κ2 = ε−2ρTF(ri).

However, the bound |Qi|hex log(κ/
√
hex) would be too small and not

even applicable, because |Qi| depends on ε and Ω while the SS

estimate is for a fixed domain.

The way out is to blow up the size of the Qi by scaling all lengths with

`−1. This transforms the problem into an estimate for a GL functional

on a unit square with

|hex| = `22Ω and κ2 = ε−2`2ρTF(ri).

By the condition on ` we have log κ� |hex| � κ2. Thus one can apply
the estimate from GL theory and obtain a lower bound matching the
upper bound, provided the condition | log ε| � Ω� ε−2| log ε|−1 (that
entered in the definition of `) is satisfied.
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Uniform Distribution of Vorticity

A further result that can be proved using GL techniques is

Theorem

Let ψGP be any GP minimizer and ε > 0 sufficiently small. If
| log ε| � Ω� ε−2| log ε|−1, there exists a finite family of disjoint discs{
Bi
}
⊂ supp ρTF with

the radius of any disc is smaller than Ω−1/2

the sum of all the radii is much smaller than Ω1/2 and, denoting by
ri the center of each ball Bi and by di the winding number of ψGP

on ∂Bi,
2π

Ω

∑
diδ (r− ri)

w−→
ε→0

χTF(r) dr,

in the sense of measures, with χTF(r) the characteristic function
of supp ρTF.
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Reviews on Vortex Ball Constructions

Due to lack of time the vortex ball technique cannot be explained here

but detailed information can be found in

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau

Model, Birkhäuser 2007.

S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices,

ArXiv:1403.6860v2, in particular Section 8.
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The Emergence of a ‘Giant Vortex’

For Ω > ωc3(ε2| log ε|)−1 a variational ansatz of the form

ψ(r) = f(r) exp(iΩ̂θ)

with a real valued function f and

Ω̂ = Ω−O(ε−1)

gives a lower energy than the vortex lattice ansatz, namely a

correction O(ε−2) to the TF energy, which is . Ω| log ε| for

Ω & (ε2| log ε|)−1.

This does not prove, however, that the energy Egv of the ‘giant vortex

ansatz’ gives a good approximation to the energy of the true minimizer,

nor that the latter is free of vortices in the bulk. That both statements

are true is the content of the two theorems, proved by Michele

Correggi, Nicolas Rougerie and JY in 2011.
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Theorem (Energy in the giant vortex regime)

For Ω = ω (ε2| log ε|)−1 with ω > ωc3 = 2/(3π) the ground state energy
is

EGP = Egv −O(| log ε|3/2/ε2).

Theorem (Absence of vortices in the bulk)

There is an annulus A of width O((εΩ)−1) with
∫
A |ψ

GP|2 = 1− o(1)
such that for Ω as above and ε sufficiently small the minimizer ψGP is
free of zeros in the annulus.

More precisely, on the annulus

| |ψGP(r)|2 − ρTF(r)| ≤ C| log ε|2ε−3/4 � ρTF(r)
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Heuristics for the Giant Vortex

The proof, in particular of the latter theorem, is surprisingly difficult but

a heuristic explanation for the transition at Ω ∼ 1/(ε2| log ε|) can be

given by exploiting the electrostatic analogy.

Consider the giant vortex variational ansatz and interpret Ω̂ as a

‘charge’ situated at the origin. The ‘electric field’ generated this charge

exactly cancels, in the annulus A, the ‘electric field’ generated in the

annulus by the uniform charge density Ω/π of the ‘hole’ (by Newton’s

theorem), due to the vector potential.

The ‘charge’ corresponding to the vector potential in the annulus,

however, is not cancelled, and this ’residual charge’ is

∼ Ω× (εΩ)−1 = ε−1.

The electrostatic energy of this residual charge distribution is ∼ ε−2.
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Heuristics for the Giant Vortex (cont.)

Creating a vortex in the annulus neutralizes one charge unit and thus

reduces the electrostatic energy by ε−1.

On the other hand, the cost of a vortex is ∼ f2 | log ε|, and we have

f2 ∼ (εΩ), so the cost of a single vortex in the bulk is

∼ εΩ | log ε| .

Gain and cost are comparable if ε−1 ∼ εΩ | log ε|, i.e., for

Ω ∼ 1

ε2| log ε|
.

If Ω is smaller it still pays to create vortices also in the annulus, but if Ω

is larger, the cost outweighs the gain and the annulus is vortex free.

Remark: These heuristics considerations are merely a plausibility

argument. They are quite far from the rigorous proof, which is a great

deal more complicated!
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Comments on the Proof of the GV Transition

The first step is an energy splitting. The GV variational ansatz

ψ(r) = f(r) exp(iΩ̂θ)

leads to a minimization problem for Ω̂ and the functional

ÊGP =

∫ {
1
2 |∇f |

2 − 1
2Ω2r2f2 + 1

2B
2f2 + ε−2f4

}
with

B(r) = Ωr − Ω̂r−1.
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Comments on the Proof of the GV Transition (cont.)

Writing

ψ = g exp(iΩ̂θ)u

with g the minimizer of ÊGP and using the variational equation for g we

obtain a splitting of the energy functional:

EGP[ψ] = ÊGP + E [u]

with a weighted GL type functional

E [u] =

∫
g2
{

1
2 |∇u|

2 −B · J(u) + g2ε−2(1− |u|2)2
}

and B = Beθ.
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Comments on the Proof of the GV Transition (cont.)

The functional E [u] is then studied by GL techniques, but a serious

complication arises because the support of g is essentially

concentrated in an annulus of shrinking width εΩ as ε→ 0.

Blowing up the width of the annulus, in a similar way as was done for

the cubes Qi in the vortex lattice regime, looks at first promishing but

still does not reduce the problem to known results. The reason is that

even if the width of the blown up annulus is fixed, its radius is not.

A decomposition of the annulus into cells of fixed size (but increasing

number) and an inductive application of the vortex ball techniques is

needed to achieve the desired results.

In a paper published in 2012 Nicolas Rougerie refined this method

even further. He showed in particular that the value ωc3 = 2/(3π) is

optimal and that the ‘last’ vortices arrange themselves in a vortex ring.
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Summary on Vortices in a ‘Flat’ Trap.

When both the coupling constant, 1/ε2, and the rotational velocity, Ω,

are large the picture in a ‘flat’ trap is as follows:

Vortices begin to appear for Ω ∼ | log ε|

For | log ε| � Ω� 1/(ε2| log ε|) the bulk is covered by a vortex

lattice.

A ‘hole’ due to centrifugal forces appears for 1/ε . Ω.

For 1/(ε2| log ε|) . Ω a ‘giant vortex’ around the origin gives the

right energy and there are no vortices in the bulk.
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‘Soft’ Anharmonic Traps

Consider now the 2D GP functional

EGP
phys[Ψ] =

∫
R2

{
1
2 |(i∇+ Aphys) Ψ|2 + (V − 1

2Ω2
physr

2)|Ψ|2 +
|Ψ|4

ε2

}

with a trap potential of the form

V (r) = krs

with s > 2, k > 0. The limiting case s→∞ corresponds to a ‘flat’ trap

with fixed boundary at r = 1.

We have used the subscript ‘phys’ to distinguish the original quantities

some some scaled versions that appear naturally if s <∞.
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Need for Scaling(s)

Contrary to the flat trap, where the extension of the condensate is

limited by the trap, the repulsive terms in the energy functional may

cause an expansion of the condensate in a ‘soft’ trap.

For suffciently slow rotation the interaction term dominates the

centrifugal term and determines the extension. The effective radius, R,

is determined by

Rs ∼ ε−2R−2 i.e. R ∼ ε−2/(2+s)

In particular, the first vortex therefore appears for

Ωphys ∼ ε4/(2+s)| log ε|

contrary to Ωphys ∼ | log ε| for a flat trap.

For faster rotation the extension is mainly determined by the

centrifugal force and the effective radius is different.
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Scaling for ‘slow’ rotation

If

Ωphys .
1

ε(s−2)/(s+2)

we define

Rε = (kε2)−1/(s+2), x = R−1
ε r,

ψ(x) = RεΨ(Rεx), Ω = R2
εΩphys, A = Ωxeθ

and obtain

EGP
phys[Ψ] = R−2

ε EGP[ψ]

with

EGP[ψ] =

∫
R2

{
1
2 |(i∇+ A)ψ)|2

+ε−2[xs|ψ|2 − 1
2ε

2Ω2|ψ|2 + |ψ|4]
}

d2x
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Energy in the regime | log ε| � Ω� ε−1

By the same methods as in the ‘flat’ case one obtains a formula for the

energy:

Theorem (M. Correggi, F. Pinsker, N. Rougerie, JY, 2012)

If | log ε| . Ω� ε−1 as ε→ 0, then

EGP = ETF + 1
2Ω| log(ε2Ω)|(1 + o(1)).
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Scaling for ‘fast’ rotation

For

Ωphys &
1

ε(s−2)/(s+2)

we use a different scaling than for ’slow’ rotation:

The effective potential (krs − 1
2Ω2

physr
2) has a unique minimum at

r = Rm = (Ω2
phys/(sk))1/(s−2). Taking this as a length unit rather than

Rε we obtain the scaled energy functional

EGP[ψ] =

∫
R2

{
1
2 |(i∇+ A)ψ|2 + Ω2W (x)|ψ|2 + ε−2|ψ|4

}
d2x

where

Ω = R2
mΩphys ∼ Ω

(s+2)/(s−2)
phys , and W (x) =

(
1
sx

s − 1
2x

2
)
.
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Scaling for ‘fast’ rotation (cont.)

The scaled effective potential Ω2W has a minimum at x = 1

independently of Ω but the value at the minimum is proportional to Ω2.

The energy of the scaled functional is related to the original energy by

EGP
phys = R−2

m

[
EGP +

(
1
s −

1
2

)
Ω2
]
.

The case Ωphys ∼ 1
ε(s−2)/(s+2) corresponds to Ω ∼ ε−1. This holds also

when Ω is defined by scaling with Rε rather than Rm.
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The TF density profile

In the parameter range Ω� ε−4 the bulk density profile of ψGP can be

approximately described by the Thomas-Fermi (TF) density

ρTF(x) =
ε2

2

[
µTF − Ω2W (x)

]
+

The density ρTF vanishes at the origin for µTF = 0 and a hole of fine

radius forms when µTF < 0. The critical velocity for the appearance of

the hole is given by

Ωc2 = ε−1
(
2
∫

[−W ]+
)−1/2

.
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The TF density profile (cont.)

As (εΩ)→∞ we have µTF/(Ω2)→ (s− 2)/2s and the density ρTF

becomes concentrated around x = 1. The inner and outer radii, xin < 1

and xout > 1 of the support, as well as µTF, are determined by

ρTF(xin) = ρTF(xout) = 0, 2π

∫ xout

xin

ρTF(x)x dx = 1.

A Taylor expansion of W around x = 1 gives the thickness of the

support:

xout − xin ∼ (εΩ)−2/3.

By the normalization of ρTF it follows that its maximum is O((εΩ)2/3).
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Limits cannot be interchanged!

In a ‘flat’ trap, corresponding formally to s =∞, the annulus has

thickness O((εΩ)−1) and the density is O(εΩ).

Reason for the different powers of εΩ: The Taylor expansion is only

justified as long as the turning point xturn where W ′′(xturn) = 0 is much

farther from 1 than xin and xout, i.e., if

1− xturn � (εΩ)−2/3(s− 1)−1/3.

For large s this is equivalent to

εΩ� s/(log s)3/2

This is always fulfilled for each finite s if εΩ is large enough (hence the

independence of s) but violated for every fixed value of εΩ if s→∞.
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The regime ε−1 . Ω� ε−4

This regime has has analogous features to the regime

ε−1 . Ω� 1/(ε2| log ε|) in a ’flat’ trap: A ’hole’ appears for

Ω > Ω2c = ω2cε
−1, but there is still a lattice of vortices in the annulus

where the bulk of the mass is concentrated.

By the same methods as in the ‘flat’ case and for | log ε| � Ω� ε−1

(vortex lattice ansatz for the upper bound, GL estimates for the lower

bound) one obtains in particular a formula for the energy:

Theorem (Energy between Ωc2 and Ωc3)

If ε−1 . Ω� ε−4 as ε→ 0, then

EGP = ETF + 1
6Ω| log(ε4Ω)|(1 + o(1)).
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The Giant Vortex Regime Ω & ε−4

Consider a variational ansatz for the wave function of the form

ψ(x) = g(x) exp(iΩϑ)

with a real valued function g, normalized such that
∫
g2 = 1. (Assume

that Ω is an integer). This gives

EGP[ψ] =

∫
R2

{
1
2 |∇g|

2 + 1
2Ω2(x− x−1)2g2

+Ω2
(

1
sx

s − 1
2x

2
)
g2 + ε−2g4

}
≡ Egv[g].

The unique positive minimizer ggv of Egv is rotationally symmetric,
Corresponding energy: Egv.
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Rough upper bound

Taking for g a regularizion of
√
ρTF we obtain

EGP ≤ Egv[g] = ETF +O(ε−4/3Ω2/3) +O((εΩ)4/3).

From now on we shall always assume that

Ω = ω ε−4

with some fixed ω > 0 while ε→ 0.

Then the second term in the energy upper bound is then O(ω2/3ε−4)
while the previous vortex lattice kinetic energy is O(ω| logω|ε−4) and
thus larger if ω is sufficiently large.

Bottom line: For large ω the giant vortex ansatz is energetically
favorable to a vortex lattice.
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The Gaussian Density Profile

In contrast to the regime Ω� ε−4 the TF profile is not a good
approximation if Ω ∼ ε−4.

Egv[g] = −(s− 2)

2s
Ω2 +

∫
R2

{
1
2 |∇g|

2 + Ω2U(x)g2 + ε−2g4
}

d2x

with
U(x) = 1

2(x− x−1)2 +
(

1
sx

s − 1
2x

2
)

+ (s− 2)/(2s).

Taylor expansion of U around x = 1 gives

U(x) = 1
2α

2(x− 1)2 +O((x− 1)3)

with α2 = 4 + (s− 2).

Jakob Yngvason (Uni Vienna) Quantum Vortices 64 / 74



The Gaussian Density Profile (cont.)

After scaling and translation x→ y = Ω1/2(x− 1) we are, for
Ω = ω ε−4, led to the functional

Eaux[f ] = Ω

∫
R

{
1
2 |f
′|2 + 1

2α
2y2f2 + ω−1/2f4

}
dy

All three terms are of the same order of magnitude, and we cannot
ignore the gradient term as in the TF approximation!

Without the last term the minimizer is the gaussian

fosc(y) = π−1/4α1/4 exp{−1
2αy

2}.

Hence the minimizer is approximately gaussian if ω is large.

The length scale is Ω−1/2 = ε2ω−1/2 that is, for large ω, much larger
than the thickness of the TF annulus ∼ (εΩ)−2/3 = ε2ω−2/3.

Jakob Yngvason (Uni Vienna) Quantum Vortices 65 / 74



The Gaussian Density Profile (cont.)

For large ω

ggv(x) ≈ gosc(x) = Ω1/4fosc(Ω
1/2(x− 1)).

In particular, the integral of g2
gv over an annulus

Aη = {x : |x− 1| ≤ Ω−1/2η}

tends to 1 if and only if η →∞. (Even though Ω−1/2η → 0.) The same
holds for the density |ψGP|2 so any such annulus contains the bulk of
the density if η →∞.

For the proof of absence of vortices in Aη it is, however, necessary to
restrict η. In fact, we prove that the annulus is vortex free if
η = O(| log ε|1/2).
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Energy Estimates and Absence of Vortices

THEOREM [Energy in the giant vortex regime]

There is a constant 0 < ωc3 <∞ such that for Ω = ω ε−4 with ω > ωc3
the ground state energy is

EGP = Egv +O(| log ε|9/2).

THEOREM [Absence of vortices in the bulk]

There is a constant c > 0 such that for Ω = ω ε−4 with ω > ωc3 and ε
sufficiently small the minimizer ψGP is free of zeros in the annulus

A = {x : |1− x| ≤ cΩ−1/2| log ε|1/2}.
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On the proofs

The main issue is the lower bound. Restrict Egv to the annulus A,
obtaining a positive minimizer g. Define u(x) on the annulus by writing

ψGP(x) = g(x)u(x) exp(iΩϑ).

The function u contains all possible zeros of ψGP in the annulus. The
variational equation for g leads to the lower bound

EGP ≥ Egv
A + EA[u]

with a functional of Ginzburg-Landau type with g2 as weight

EA[u] =

∫
A
g2
{

1
2 |∇u|

2 −B · J(u) + ε−2g2(1− |u|2)2
}

where B = Ω(x− x−1) eϑ and J(u) = i
2(u∇u∗ − u∗∇u).

One needs to estimate the negative term −
∫
g2B · J(u).
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On the proofs (cont.)

Write g2B = ∇⊥F with ∇⊥ = (−∂x2 , ∂x1) and a potential function F .
Integartion by parts and estimates of F (key point!) give∫

A
g2
{

1
2 |∇u|

2 −B · J(u)
}
≥ −Cω2| log ε|3/2

leading to the lower energy bound.

A consequence of this bound, combined with the variational upper
bound Egv

A ≤ 0 is an upper bound on the interaction term for large ω:∫
A
ε−2g4(1− |u|2)2 ≤ Cω2| log ε|3/2

Together with the upper bound and the Gagliardo-Nirenberg inequality
this implies that u must be close to 1, in particular free of zeros.

Jakob Yngvason (Uni Vienna) Quantum Vortices 69 / 74





Comparison with the ‘flat’ case

The flat case, s =∞, differs from the case s <∞ in several respects:

The GV transition takes place at Ω ∼ ε−2| log ε|−1 rather than
Ω ∼ ε−4

The density profile in the GV regime is of TF type

The ‘last’ vortices before the GV transition have size ∼ ε3/2 that is
much smaller than the thickness of the annulus ∼ ε| log ε|. For
s <∞ the size of vortices, ∼ ε2 and the size of the annulus,
∼ ε2| log ε|1/2, are almost comparable.

The techniques of proof in the two cases are also by necessity
different: While vortex ball constructions and subsequent jacobian
estimates for the potential function are applicable for the ‘small’
vortices in a ‘flat’ trap they are useless for s <∞ and new ideas are
required.
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Circulation and symmetry breaking

Below the onset of the second vortex the GP minimizer has rotationally
symmetric density, but a vortex lattice clearly breaks the symmetry. On
the other hand, the giant vortex variational ansatz, that gives an
excellent approximation to the energy for ω > ω̄, is an eigenfunction of
angular momentum. A true minimizer does not have this property,
however:

THEOREM (Circulation and rotational symmetry breaking)

In the giant vortex regime ω > ω̄ the circulation of any GP minimizer is
2πΩ +O(ω | log ε|9/4), but no minimizer is an eigenfunction of angular
momentum.

These result holds both for s <∞ and s =∞.
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Summary

The study of the GP equation for dilute Bose gases in rapidly rotating,
anharmonic traps reveals a surprising rich landscape, both from the
mathematical and physical point of view. Detailed analysis can be
carried out in an asymptotic regime where both the coupling constant
and the rotational speed are large.

Among the results found are:

Energy asymptotics corresponding to a distribution of vorticity in a
lattice of vortices for Ωc1 � Ω� Ωc3.

Emergence of a ‘hole’ with strongly depleted density above a
critical rotation speed Ωc2 ∼ ε−1.

Transition to a ‘giant vortex’ state above Ωc3 ∼ ε−4 where the
vortex lattice disappears from the bulk and all vorticity resides in
the ‘hole’, creating a macroscopic circulation in the bulk.

Breaking of rotational symmetry, also in the giant vortex regime.
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