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Preface to the promotional trip which you booked . ..

These four lectures are meant as an invitation to the mathematically largely unexplored
playing field of quantum spin glasses. The QREM is the simplest mean-field quantum
spin glass and we will explore its low-energy properties — in particular, the quantum
phase transition at its ground state and questions this connects to.

Selected references to these lectures:

m A. Bovier. Statistical Mechanics of Disordered Systems: A Mathematical
Perspective. Cambridge University Press, 2006.

m M. Ledoux. The Concentration of Measure Phenomenon. AMS 2001.

m T. Jorg, F. Krzakala, J. Kurchan, A. C. Maggs, Simple Glass Models and Their
Quantum Annealing. Phys. Rev. Lett. 101, 147204 (2008).

m S. Warzel. Low-energy properties and the ground-state phase transition in the
QREM. In preparation.

m E. Farhi, J. Goldstone, S. Gutmann, and D. Nagaj . How To Make the Quantum
Adiabatic Algorithm Fail. Int. J. Quant. Inf. 6, 503-516 (2008).

m E. Fahri, J. Goldstone, D. Gosset, S. Gutmann, and P. Shor. Unstructured
Randomness, Small Gaps and Localization. J. Quant. Inf. Comp. 11, 840-854
(2011).

m J. Adame, S. Warzel, Exponential vanishing of the ground-state gap of the
QREM via adiabatic quantum computing. arXiv:1412.8342.



Preface to the promotional trip which you booked ...

More generally, mathematical analysis of disordered quantum systems

includes the theory of random matrices and random operators. Background
on the latter can be found in:

| Early 2016 e

A\
Random Operators
Disorder Effects on Quantum Spectra and Dynamics

Michael Aizenman (Princeton) and Simone Warzel (Munich)

Disorder effects on quantum spectra and dynamics have drawn the
attention of both physicists and mathematicians. This book serves as
an introduction to the subject of random operator theory. The text
focuses on the relevant mathematics while paying heed to the physics
perspective. The techniques presented combine elements of both analysis and probability
and couple mathematical discussion with interesting implications to physics. This long-

awaited book by the leading experts in the field will be of interest to both graduate students
and researchers.

)
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l. Motivations and a common theme



|.1 . EVO|Uti0n Of QuaSi-SpeCieS in a rough fitness landscape

Schuster/Eigner ’77, ...

Simple organism, whose genetic information is encoded in genotyps of length
N, i.e., in a binary vector from {0, 1}V

m Total number of genotyps: 2V
m Mean number of genotype «in sample: n, € R

Evolution: na(t ZHagnB ) —na(t)J(t), e {1,...,2"}.

m H,s transition rate (by mutation and selection) trom type 5 zu «.
m J(t) death rate, i.e. due to overpopulation

J(t) = do X7 na(t), Jo > 0.



Mutation and selection model Baake/Wagner 01, ...

Haﬁ = Uaéaﬁ +4 571 Aaﬁ ‘

0000 0001
>
m Graph-Laplacian A on Hamming cube {0, 1}, o 1900 A
i.e. IO 110
(An)o => ng—Nn,
1010 1011
Ba 0010, .
T 0011
(Excursion: properties of A) e
m Mutationrate k= > 0 0110 o111

m Growth rate, i.e., fitness’ of genotype «:

Us =Y Hap
B

Hammingcube in case N = 4

Rough fitnesss landscape:  {U.},c( . ovy 1.i.d. random variables



Evolution in this model

() = 3 Has (1) = ma(0) (1)
B=1

Basic question:

relative number of genotypes for t — co?



Evolution in this model

() = 3 Hs (1) = ma(0) (1)
B=1

Basic question:

relative number of genotypes for t — co?

Trick: ra(t) := na(t) exp (/ J(s) ds) solves ra(t) = Z Haprs(t)

ra(t) = (e’Hr(O)>a




Evolution in this model

Basic question:

relative number of genotypes for t — co?

Trick: ra(t) := na(t) exp (/ J(s) ds) solves ra(t) = ZHa/gr@

ra(t) = (e”"r(O))a

Summary:

m Largest eigenvalue Ay > X2 > ... of H = (H,g) and eigenvector v
dominate the long-time behavior:

r(t) ~ €™ (y1, r(0)) ¥ (t — 00).

m )y determines relative number of genotypes for t — oo:

B If )1 sharpely localized in one entry, then this genotype dominates after
evolution.

B If ¢y delocalized, the evolution does not create a dominant genotype.



Excursion: Laplacian on the Hammingcube

Laplacian on /2({—1,1}"):

m 'Spin’ Flip Operator:

(—A¢)(0)

Zw(FU

Fio = (o1,...,—

Spin Flip Operators commute for different j. Hence Laplacian is a direct sum of N commuting operators!

m Eigenvalues: 2|A|,

m Normalized eigenvektors:

Ac{1,....,N
fA(O'):i

Degeneracy: ()



I.2. Adiabatic Quantum Computing

Problem: Find minimum in a complex energy landscape (M =2N)
u:{1,..., M} - R

T .
Classical algorithms ...succeed in O(M) steps.
Idea for speed-up: Quantum Computation by Adiabatic Evolution

E. Farhi, J. Goldstone, S. Gutmann, M. Sipser:

arXiv:quant-ph/0001106



I.2. Adiabatic Quantum Computing

The energy landscape u : {1, ..., M} — R defines a 'Problem-Hamiltonian’:
U = diag (u(1),...,u(M)) .

Consider the quantum-time evolution on C" generated by

] h(s) := hp(s) + ¢(s) U\

where
m c:[0,1] — [0, 1] is a continuous coupling, ¢(0) =0, ¢(1) = 1.

m 'Driving-Hamiltonian’ hp : [0, 1] — Herm(C"*M) is continuous,
ho(1) = 0

Initial value problem: i%w(t) = h(t/T)y(t) ¥(0) e CM.

Hope:

Interpolate between known ground-state of h(0) = hp(0) and h(1) = U in
time T.



I.2. Adiabatic Quantum Computing

3

Rule of thumb: f

Ei(s)
Time ittakes T ~ ¢ /v
where ymin is the lowest spectral gap Yanin
of h(s) minimized wrt s.

Eo(s)
... more later in Part IIl. N

Summary: Scaling of the lowest spectral gap of h(s) with N decides,
whether the problem remains 'hard’ on a quantum computer as well.



Guiding theme:  Anderson Modell on the Hamming cube

H=—-A+rU on/?({-1,1}")

m x>0 disorder parameter

m U(o) i.id. random variables interesting regime: || U|| oo = O(N)

In these lectures: U(o) = VN g(o)

with g(o) i.i.d. Gaussian random variables.

Physics literature: Quantum Random Energy Model



Excursion:  Simple properties of REM U(o) = VN g(0)

Reference: Bovier, Statistical Mechanics of Disordered Systems, CUP 2006.

N ) >
Let un(x) fir x > —""N he unique solution of eV Pdy =e "
( ) 2z \/7 fuN(x)
1 ke In (47 In2V) ( 1 ) , 1
Then: un(x —+— ————F—= | +o(—5 | mit|ke= .
M=t ( 2 N °” V22
Lemma (Extremal value statistics 1)
For all x > —oi :

oN

IP( minU > —N uN(x)) = (1 - 2—Ne—X) e ®

—X

E.g. for x = eN/k2 mit ¢ > 0 with asympt. (exp.) full probability:

minU > —Nun(eN/s) > —rg ' (14 )N

Ul <re" (1 )N




Excursion:  Simple properties of REM U(o) = VN g(0)

More is known, e.g.:

Extremal values Unin =: Up < U; < ... consitute a Poisson process with
exponentially increasing intensity:

Lemma (Extremal value statistics )

The point process
Z 6u,g1 (U(o)/N)

converges weakly for N — oo to the Poisson process with intensity measure
e “dx.



Prediction for QREM

Low-energy spectrum:

Jorg/Krzakala/Kurchan/Maggs,

8
s
S
2
S
2
7 ¢
8 Tk
PRL 101, 147204 (2008) H ‘ Ari(N) Ry
Q =2 o1 £ Lo
e .
3 24
g 26 0.01
=
1 g 1.4 w28 [ 0,001
r=xk=', H=r"'"(5(-A=N)+xU) 8 1012141618202224
2 -30
o] 0.2 0.4 0.6 0.8 1 1.2

r

Quantum phase transition of the ground-state at «. = \/ﬁ:

Kk < k¢: delocalized ground state and low-energy states
Kk > K¢:  ground-state is localized mostly in lowest value of U.

k= K¢ Ymin = E1 — Ep is typically exponentially small N



Prediction for QREM

Low-energy spectrum: 3

Jorg/Krzakala/Kurchan/Maggs, § L

PRL 101, 147204 (2008) H i Amin(N) L
g = 0.1 s B
3 -24 |
g 28 0.01 |

TN 1.9 o 28 o001
r=xk=", H==k (E( A —N)+ rU) 8 1012141618202224

0 0.2 0.4 0.6 0.8 1 1.2
T
Back of the envelop calculations for the ground state: 1st perturbation theory
m Fate of localized states: (60, Hé6) = N + k U(0).

m Fate of delocalized states:

(fa, Ufa) = 2NZU(U) O(VN27"/%),



Il. Anderson Model on the Hamming cube

Spectral properties near the ground state and some math methods to take home...



QREM and predictions

H=—-A+xrU on??({-1,1}")

m x>0 disorder strength

m U(s) = VN g(o) , where g(o) i.i.d. standard Gaussian random
variables.

Low-energy spectrum: §
Jorg/Krzakala/Kurchan/Maggs, ?_';
PRL 101, 147204 (2008) g
g
8
%
:0: 26 0.01 E
r= N_1, g
u 28

i oot L
H=r"1(3(-A=N)+rU) 8 10121416 18202224

0 0.2 0.4 0.6 0.8 1 1.2
r

Critical disorder parameter:  k¢; =



II.1. Spectral properties in case x < x¢

Theorem (k < kc)

In casee > 0 there is N. € N, s.t. with asympt. (exp.) full probability and all
N > N., the eigenvalues E of H with E < (1 - n% — 35) N are found in
intervals centered at

2n—1fj, ne{0,1,...}],

with radius O (/"%Y).

hY C fam —
o = s

There are exactly (’;,’) eigenvalues in each ball and the corresponding
normalized eigenfunctions e are delocalized:

lel2, < 27V e CEI

where T (x) := —xInx — (1 = x)In(1 — x) and xg := % — H%’“".




Il. 2. Methods of proof — delocalization regime
Step 1: Hypercontractivity of the Laplacian

Integral kernel of semigroup: (3, , € 5,) = e~ ™ cosh()" tanh(t)%**").

Hypercontractivity:
1/2 1 —ot\ N/2
HGYAH = sup Sup‘<5a7etAw>) < )(507621‘A60> _ (+Te) ‘
2500 |ly=1 @

Estimate of eigenfunctions:

Lemma (Delocalization)

The (?-normalized eigenfunctions e of H = —A + kU corresponding to
eigenvalues E < 2N + kUpy, satisfy forallo:  |ve(o)? < 27N e"(EIV,

with xg ::%—% < 2.

Proof:

A

We(0) < (6s, Psog(H)d,) < inf 6€(5,, 6 ™M0,)

t>0

< tmg er(E—nUmm)wmerA 8,) = =N eF(TE)N. 0
>



Methods of proof — delocalization regime

Step 2: Concentration of measure
Spectral projection onto center of the band and its complement:  § > 0.
Qs :=1—Ps = Iina—s)Na+sn(—A).

(N—a)/2

Chernoff estimate » <n> < 2" exp (—a2/2N), a e (0, N), folgt:

n=0

dim Py < oM+ g=0*N/2

Lemma (Concentarion of measure I)

Consider {W (o)} i.i.d. r.v., which are bouned, ||W|| - < 1. Then forall § > 0,
A>0:

dimP, _en2
IP’<||P5WP5||—IE[|P5WP5||]|>>\ oN 5) < Ce

where C, ¢ € (0, c0) are numerical constants.



Methods of proof — delocalization regime

Talagrand, Publ. Math. IHES 81, 73-205 (1995)

Lemma (Talagrand inequality)

LetK > 0 and Xy, ..., X, independent complex-valued. r.v.’s, which are
bounded by K. Let F : C" — R be a 1-Lipschitz convex function. Then:

P(|F(X) - E[F(X)]| > AK) < Ce~"

where C, ¢ € (0,00) are numerical constants.

Application F: RSV R, F(W) = ||PsWPs|:
Buondedness and convexity are evident. (Triangle inequality).
Lipschitz continuity: ~ Pick ¢ € Ps¢2(Qn) normalized and F(W) = (1, Wp).

F(W) — F(W') < (o, Wep) — (¢, W'ep) < [|[W — Wll2|9 ]|

dim P5
2N

S IW = W|2v/(dc, Psdo) 9]z = [W — W2



Proof of Talagrand’s inequality in simplified Gaussian set-up'

W|Og E [F(X)] = 0 and F smooth after Maurier, Pisier

Estimate on exponential moment is enough: E [e‘F(X)] < e forall t > 0.

Inserting an independent copy Y of X results in an upper bound by Jensen’s
inequality:

/2
E [e’F(X)] <E [e’(F(X)‘F(Y))] =E [exp (t/ %F(Xcos@ + Ysin 0)d6>}
0

2 [T/ T . ,
<< E [exp (t—(VF)(XcosG +Ysing) - (—Xsind + Y cos e))] do
T Jo 2

Conditioning on Gaussian rv’'s X cos 6 + Y sinf, the rv’'s —X'sinf + Y cos 6
are independent and Gaussian! Integrating out the latter, and using
[VF| < 1 yields the result.

1 For a complete proof, see also: Tao, Topics in random matrix theory, AMS 2012



Methods of proof — delocalization regime

Lemma (Concentarion of measure Il)
Consider {W(o)}scqy I.i.d. r.v. with the following properties:
centered, E[W(o)] =0,
bounded variance, E [W(c)?] <1, and
bounded |W||« < pn, where py is a polynomial in N.
Then for all 5 > 0 and all N with p3 exp(—62N/2) < 1 (i.e. all N sufficiently
large):

E[||PsWPs||] <2Ne >4,

Upper bound: E[||Ps WPs||] < (E [Tr(Ps WP5)2N])‘/2’V
Estimate Schatten norms by method of moments ...



Methods of proof — delocalization regime

Application: For any € > 0 with asympt. (exp.) full probability:
fie[Ulloo < (1 4+€)N

Effective truncation of the potential, s.t. for all ¢ € (0, 1) with asympt. (exp.)
full probability for all 6 > 0 and all N sufficiently large (only depending on ¢):

B k|| PsUPs|| < 4N%/2e= 9N/,

Concentration I: W = ncﬁ, A= VN/2

Concentration Il: W = U/v/N

_ 52
m <2||Ps(UP — N)Ps|| < 8N2e > N/4,
2
Concentration I: W = ngﬁ A =+vN/8
Concentration Il: W = (U? — N)/N

2
m ki Ps(U* — cN?)Ps|| < 8NPe™ o N/4,
— w2 Lo N/s
T C(4e)dNGT T T

Concentrationl: W
Concentration Il: W = (U* — cN?)/N?



Methods of proof — delocalization regime

Step 3:

Rigorous perturbation theory

Lemma (Krein-Feshbach-Schur)

For all E < info(QHQ) and R(E) := (Q(H — E)Q)~" (on the subspace
corresponding to Q):

E € o(H) iff0 € o (PHP — E — PHR(E)HP).

Hy = Ev with o = (1, 42)" iff:
(PHP — E — PHR(E)HP) ¢y =0
und b = —R(E)QHP1 .



Methods of proof — delocalization regime

Proof idea of theorem in case « < kc:

m Lower bound on Qs HQ; on Qs¢2(Qn) with asympt. (exp.) full
probability:

—Q;AQs + 1 QsUQs > (1 —6)N — (1 +5)Nﬁiz (1 _i_ze)/\/
(o]

Ke

where 0 < § < e and N is sufficiently large .

Hence for all £ < (1 A 36) N:  ||Rs(E)| <

m resolvent equation:

1
eN’

Ri(E) — 1122 = As(E) (NQs — QsHQs) 1122

and hence:
PsURs(E)UPs — P, N
[ ) [ 5 N — E

— P;URS(E) (NQs — QsHQs) UPs—

N-E

+P§(U05U— N) Ps

1
N—-E"



Beweisidee des Theorems x < kg

From concentration of measure estimates:

|Ps (UQsU — N) Ps|| < c N2 e~ N/,

1P URs(E) (NQs + QsAQs) 71— UPs |

< cOlR(ENIPUPPs] < 2 (14 Ne™™) |

IRs( )

111Ps URs(E)@s U@s 1z UPs | < LEENL sy wups

< NE <N+N2 e ¢ N/4> (N2+N3 o=° N/4)% .

Choice of § = O (,/%).

Insert into Krein-Feshbach-Schur formula ...



Il. 3. Energies above the tips of the REM — some cherries from the pie

Idea: Geometric decomposition of Hamming cube

Eigenvalues below E. := (1 -t e) N with € > 0 small, stem from large
negative deviations of REM:

Xe = {U|/<;U(U) < fiNJréN}
Ke

O G
o o °F°

Fore > Osmallenoughy > 0and0 < v < N—’“C — €, s.t. with asmpt. (exp.) full
probability:

m X, consists of isolated points, separated by 2N steps.

m Onballs B, := {o’ | dist(c, ') < N} the potential xU(c”) is larger or
equalto —vNforall o’ # o.



Energy adapted decomposition

Let R:= On\U,cx B~ and

Hg, = lg, H1g,, auf /%(B,),
Hr = 1gH1g auf 2(R).

Consider |H := H—T:= (P Hs, @ Ha|

o€Xe

Naive estimate: T < /(1 — )N+ o(N).



Energy adapted decomposition

Let A:= On\U,cx B~ and

Hg, = 1, Hl1g,, anZZ(BO—),
Hg := 1gH1g aufﬁZ(R).

Consider |H = H—T:= (P Hs, @ Ha|

oeXe
Better:  Pg:= 1(_o.g(H)mit E = E. +||T|.
H = He+Te
L H Pe 0 = PeTPe  PeTQe
mit He = ~ , und Tg =
£ ( 0 HQE+QETQE> E (QETPE 0

Main message: ||P:T|| < e %",

m Spectrum of Hg below E. resembles H in delocalization regime.
m Spectrum of Hg_, below E. can be computed explicitly . . . next page



Spectral geometry on Hamming balls

Ground state of Laplacian on ball B, :

’Eo( As,) = N(1 - 2/~(1 — 7)) + o(N ‘

Add rank-one perturbation «U(o) plus moderate background potential:
m | Eo(Hs,) = N+rU(o) +0(1)]

m The normalized ground state satisfies:

ST (o)) < e mitL, > 0.

o’/ €0B,

[o(a)P > 1 - ONT")

m Hg, has a spectral gap O(N) above its ground state.



lll. Adiabatic quantum computing
and a gap estimate



Adiabatic quantum computing

Consider an energy landscape v : {1,..., M} — R, which defines a
"Problem-Hamiltonian’

U = diag (u(1), ..., u(M))

on CM. Consider the time-evolution generated by

] h(s) := hp(s) + c(s) u\

on CM, where:
m c¢: R — [0, 1] continuous coupling, ¢(0) =0, ¢(1) = 1
m 'Driving-Hamiltonian’ hp : R — Herm(C"*M) continuous, hp(1) = 0.

Initial value problem: i%w) _ h(t/TYye()  $(0)eCM.

Aim: Compute the mimimum location jp € {1,..., M} of U!

One wants the quantum adiabatic algorithm to succeed not only for one energy
landscape but for many. Consider the ensemble of scambled problems . ..



IIl.1. Lower bounds on run time for scambled problem

Let 7 € Sy be a permutation on M elements and define
U, = diag (u(w—‘(m, o u(7r_1(M)))

and h(t) := hp(t/T) + c(t/ T)U=, and denote by . (t) the solution of the
corresponding initial value problem starting from a common initial state (0).

Success probability for search after run-time T:
[Wn(m(o); TIF =26 (%)
Farhi, Goldstone, Gutmann, Nagaj Int. J. Quant. Inf., 503-516 (2008), 503-516

Theorem (Scambling theorem)
Lete > 0 and suppose that (*) holds for a set of eM! permutations. Then for
all M:
2bM — 4e /=M
>_ - V2 =
T = 160’M(U) [ TM(b7 5)]
where om(u)? == ¥, (u(k) — u(jo))? is assumed to be strictly positive.

Typically for large M: T > O(VM).

Timescale of Grover search algorithm!



Ill.2. A gap estimate via the run time

Adiabatic theorem: Jansen/Ruskai/Seiler, J. Math. Phys. 48, 102111 (2007)

Theorem (Kato)

Let h(s), s € [0, 1] be a family of twice continuously differentiable hermitian
matrices on CV with non-degenerate ground-state ¢(s) € CV and gap
~(s) > 0. Then the unique solution of the initial value problem

P S =RYTIV0,  9(0)=9(0),

satisfies

V1=16(T), 60 < ‘L@J(m+mywmn

! 7 /!
+/0 W” (s)IP + e )zllh (s)llds

Generalization to infinite-dimensional Hilbertspaces



Application to the scrambled problem

Suppose h-(s) = Hp(sT) + ¢(sT) Uy, s € [0, 1], satisfies assumptions in
adiabatic theorem with - (s) > 0 gap above the ground-state and set

# . ; 2 3}
. = min_ {vx(S),V=(S .
’leﬂﬂr 56[0,1]{ ( ) v ( )

Suppose that for some Cy < co one has
max{||h(s)]], ||Hx(s)|I%, [|H2(s)||} < Cum forall s € [0,1] and all 7.

Application: scrambled QREM M =2V
B h.(s)=—(1-5)A+sU-
m (|h(s)|| < Al +k[lUI <2N+ 2N, |hi(s)]| =0
m ow(u)® < M2||UJ| < MAN.

Then by the adiabatic theorem:

10Cu
T’Yﬁin,ﬂ'

V1 = e (o) T < (+5)

forall T > 0.



A gap estimate via the run time

For e € (0, 1] take M large enough st Tu(3,) > 0 and consider the set

Gu(e) := {W|’yminm > 7TM(%,5)
and
T= TM(%,E)/Z.

By (") forany 7 € Gu(e):  [¢x(m(io); T)P > }.
The scambling theorem then implies that for all M large enough:

|Gm(e)| < eM!.

Using permutation invariance of the REM distribution this yields with e = N~

Corollary

There is some constant C < oo such that for the QREM

fim P (v, < ON*27M%) = 1.

N— oo



I1.2. Proof of the lower bound on the run time
Letk € {1,...,M} and , where 7; « € Sy is the transposition of
Jjand k.

Lemma ('scambling’)

M
]
Forall T > 0 and all k: i Z D la(T) = ¢m (T < 4 T om(u).
€Sy k=1

Lemma (‘geometry in Hilbert space’)

Letvy,...,v. € CY orthonormal vectors and i1, . .. ,v. € CM normalized
vectors, which satisfy

forallk € {1,...,L}: vk, )P > b>0.

Then for all normalized ¢ € C:

L
S Ik — ol > bL—2VL.

k=1



Proof of the lower bound in scrambling theorem

Fix 7 € Sy and let
Gr = {k e{1,...,M}| [tbn, (n(K); T)] > b} .

Lemma 2 with L = |Gx| und vk = e, With k € G, and ¢« = 9, (T) and
¢ = Y (T) yields:

D a(T) = bm (TP > b|Gx| —2V]Gxl,  (#)

keGn
Estimate on |G| starts from observation that by assumption:

M

DG =D > Wm (ko)) TP = b] = eMIM.

TESY k=1 m€Sy

o1 €
This implies: 7 ZS: N 25m > 5
TESH

Apply Lemma 1 and use (x):

1 2bM — 4e\/5M
T2 fidomis) 2 2= V(1) = vr(DIF 2 T(u)r

T KEGr



Proof of Lemma 1

Just a calculation:

d
gl () = Y (1)1

— 29 Re(y (1), tbn, (1))

== 2gte [i{Hx () (1), oy (£)) — (W (), Ho ()00, ()]

=21m{r (1), [Hx (t) = Hry ()] i (1)

=2¢(t) Im (Y (2), [Ur — Un ] ¥ (1))

=2¢(t)(u(k) — u(io)) Im [(¢x (1), €x(r)) (€x(kys Vi (1)) = (¥r (1), €y (k) (Emyihy, P (1))]

<2|e(t)] |u(k) = ulio))] (|{¥= (1), Ex(io)| + [(Ery), ¥ (1))



Proof of Lemma 1

Just a calculation:

> %wa(f)*wm (O < 4le(t)] Y lu(k) — uGo))! [(=(1), €xe)| -

TESY TESY

Cauchy-Schwarz for the k-sum:

O S et — v (D] <4 Y JZW —uuo)wzw(t) exi)[*

TESY k=1 TESY k=1

=4Mou(u).
Integration using ¥~ (0) = (0) yields:

M
SO S 9 (T) = G (DI /Z Zwﬂ(t) Uy (1)

rESy j=1 rESY
< 4T M O’M(U) .



Proof of Lemma 2

Complete w1, ..., v, to ONB of CV:

L

>l —ell?

k=1

ZZ“@W Vj? >|

k=1 j=1

(Vi ) — (Vi )

M)~

>

>
Il

1

~

(166 + (vis @)1 — 2 Re e, i) (Wi, )]

k=1

L L
;sz—2$§:Kwﬁwk J}:w,

k=1 k=1

>Lb—2VL.



IV. Interesting directions to explore

m Thermodynamic phase transitions of QREM:

20, 40 lowest eigenvalues

E(I) for N

-28

-30

m Resonant delocalization of eigenfunctions closer to center of the band
Bandmitte and in band-gaps of Laplacian.

Numerical results:

24

-26 +

Jorg/Krzakala/Kurchan/Maggs, PRL 101, 147204 (2008)
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IV. Interesting directions to explore

Toy model for resonant delocalization in QREM:
Anderson Modell on the complete graph on M vertices

| H = —l0) (ol + rts g |

with (o] = (1,1,...,1)/VM und ky := \/2|AOW

Surprising result M.Aizenman, M. Shamis, S.W. (2014)

Band of ¢'-delocalized states near E ~ —1 in case A > v/2.



