Spectral properties of the QREM

Simone Warzel

Zentrum Mathematik, TUM

Valparaiso, August, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

These four lectures are meant as an invitation to the mathematically largely unexplored playing field of quantum spin glasses. The QREM is the simplest mean-field quantum spin glass and we will explore its low-energy properties – in particular, the quantum phase transition at its ground state and questions this connects to.

Selected references to these lectures:

- A. Bovier. Statistical Mechanics of Disordered Systems: A Mathematical Perspective. Cambridge University Press, 2006.
- M. Ledoux. The Concentration of Measure Phenomenon. AMS 2001.
- T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, Simple Glass Models and Their Quantum Annealing. Phys. Rev. Lett. 101, 147204 (2008).
- S. Warzel. Low-energy properties and the ground-state phase transition in the QREM. In preparation.
- E. Farhi, J. Goldstone, S. Gutmann, and D. Nagaj. How To Make the Quantum Adiabatic Algorithm Fail. Int. J. Quant. Inf. 6, 503-516 (2008).
- E. Fahri, J. Goldstone, D. Gosset, S. Gutmann, and P. Shor. Unstructured Randomness, Small Gaps and Localization. J. Quant. Inf. Comp. 11, 840-854 (2011).
- J. Adame, S. Warzel, Exponential vanishing of the ground-state gap of the QREM via adiabatic quantum computing. arXiv:1412.8342.

More generally, mathematical analysis of disordered quantum systems includes the theory of random matrices and random operators. Background on the latter can be found in:

Random Operators Disorder Effects on Quantum Spectra and Dynamics

Michael Aizenman (Princeton) and Simone Warzel (Munich)

Disorder effects on quantum spectra and dynamics have drawn the attention of both physicists and mathematicians. This book serves as an introduction to the subject of random operator theory. The text focuses on the relevant mathematics while paying heed to the physics

Sac

perspective. The techniques presented combine elements of both analysis and probability and couple mathematical discussion with interesting implications to physics. This longawaited book by the leading experts in the field will be of interest to both graduate students and researchers.

- I. Motivations and a common theme
- II. Anderson Model on the hypercube
- III. More on adiabatic quantum computing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

IV. Interesting directions to explore

I. Motivations and a common theme

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schuster/Eigner '77, ...

Simple organism, whose genetic information is encoded in genotyps of length N, i.e., in a binary vector from $\{0, 1\}^N$.

■ Total number of genotyps: 2^N

• Mean number of genotype α in sample: $n_{\alpha} \in \mathbb{R}$

Evolution:

$$\frac{d}{dt}n_{\alpha}(t) = \sum_{\beta=1}^{2^{N}} H_{\alpha\beta} n_{\beta}(t) - n_{\alpha}(t) J(t), \ \alpha \in \{1, \ldots, 2^{N}\}.$$

I $H_{\alpha\beta}$ transition rate (by mutation and selection) trom type β zu α .

■ J(t) death rate, i.e. due to overpopulation

$$J(t) = J_0 \sum_{\alpha=1}^{2^N} n_{\alpha}(t), J_0 > 0.$$

$$H_{\alpha\beta} = U_{\alpha}\delta_{\alpha\beta} + \kappa^{-1}\,\Delta_{\alpha\beta}$$

■ Graph-Laplacian △ on Hamming cube {0,1}^N, i.e.

$$(\Delta n)_{\alpha} = \sum_{\beta \sim \alpha} n_{\beta} - N n_{\alpha}$$

• Mutation rate $\kappa^{-1} > 0$

Growth rate, i.e., 'fitness' of genotype α :

Rough fitnesss landscape: $\{U_{\alpha}\}_{\alpha \in \{1,...,2^N\}}$ i.i.d. random variables

Hammingcube in case N = 4

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

$$\frac{d}{dt}n_{\alpha}(t) = \sum_{\beta=1}^{2^{N}} H_{\alpha\beta} n_{\beta}(t) - n_{\alpha}(t) J(t)$$

Basic question:

relative number of genotypes for $t \to \infty$?

Trick:
$$r_{\alpha}(t) := n_{\alpha}(t) \exp\left(\int_{0}^{t} J(s) \, ds\right)$$
 solves $\frac{d}{dt}r_{\alpha}(t) = \sum_{\beta} H_{\alpha\beta}r_{\beta}(t)$ s.t.
$$r_{\alpha}(t) = \left(e^{tH}r(0)\right)_{\alpha}.$$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

$$\frac{d}{dt}n_{\alpha}(t) = \sum_{\beta=1}^{2^{N}} H_{\alpha\beta} n_{\beta}(t) - n_{\alpha}(t) J(t)$$

Basic question:

relative number of genotypes for $t \to \infty$?

Trick:
$$r_{\alpha}(t) := n_{\alpha}(t) \exp\left(\int_{0}^{t} J(s) \, ds\right)$$
 solves $\frac{d}{dt}r_{\alpha}(t) = \sum_{\beta} H_{\alpha\beta}r_{\beta}(t)$ s.t.
$$r_{\alpha}(t) = \left(e^{tH}r(0)\right)_{\alpha}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic question:

relative number of genotypes for $t \to \infty$?

Trick:
$$r_{\alpha}(t) := n_{\alpha}(t) \exp\left(\int_{0}^{t} J(s) ds\right)$$
 solves $\frac{d}{dt}r_{\alpha}(t) = \sum_{\beta} H_{\alpha\beta}r_{\beta}(t)$ s.t.
$$r_{\alpha}(t) = \left(e^{tH}r(0)\right)_{\alpha}.$$

Summary:

■ Largest eigenvalue λ₁ > λ₂ > ... of H = (H_{αβ}) and eigenvector ψ₁ dominate the long-time behavior:

$$r(t) \approx e^{t\lambda_1} \langle \psi_1, r(0) \rangle \psi_1 \qquad (t \to \infty).$$

- ψ_1 determines relative number of genotypes for $t \to \infty$:
 - If ψ_1 sharpely **localized** in one entry, then this genotype dominates after evolution.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If ψ_1 delocalized, the evolution does not create a dominant genotype.

Laplacian on
$$\ell^2(\{-1,1\}^N)$$
: $(-\Delta\psi)(\sigma) := N\psi(\sigma) - \sum_{j=1}^N \psi(F_j\sigma)$

• 'Spin' Flip Operator: $F_j \sigma = (\sigma_1, \ldots, -\sigma_j, \ldots, \sigma_N)$

Spin Flip Operators commute for different j. Hence Laplacian is a direct sum of N commuting operators!

- Eigenvalues: 2|A|, $A \subset \{1, \dots, N\}$ Degeneracy: $\binom{N}{|A|}$
- Normalized eigenvectors: $f_A(\sigma) = \frac{1}{\sqrt{2}^N} \prod_{j \in A} \sigma_j$

I.2. Adiabatic Quantum Computing

Classical algorithms

... succeed in $\mathcal{O}(M)$ steps.

Idea for speed-up:

Quantum Computation by Adiabatic Evolution

E. Farhi, J. Goldstone, S. Gutmann, M. Sipser:

arXiv:quant-ph/0001106

The energy landscape $u : \{1, \dots, M\} \rightarrow \mathbb{R}$ defines a 'Problem-Hamiltonian':

$$U = \operatorname{diag}\left(u(1), \ldots, u(M)\right) \, .$$

Consider the quantum-time evolution on $\mathbb{C}^{\textit{M}}$ generated by

$$h(s) := h_D(s) + c(s) U$$

where

- $c: [0,1] \rightarrow [0,1]$ is a continuous coupling, c(0) = 0, c(1) = 1.
- 'Driving-Hamiltonian' $h_D : [0, 1] \to \operatorname{Herm}(\mathbb{C}^{M \times M})$ is continuous, $h_D(1) = 0$

Initial value problem:

$$i\frac{d}{dt}\psi(t)=h(t/T)\psi(t)\qquad\psi(0)\in\mathbb{C}^{M}.$$

Hope:

Interpolate between known ground-state of $h(0) = h_D(0)$ and h(1) = U in time *T*.

Summary: Scaling of the lowest spectral gap of h(s) with *N* decides, whether the problem remains 'hard' on a quantum computer as well.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

$$H = -\Delta + \kappa U$$
 on $\ell^2(\{-1,1\}^N)$

•
$$\kappa \ge 0$$
 disorder parameter

 \blacksquare $U(\sigma)$ i.i.d. random variables

In these lectures:

$$U(\sigma) = \sqrt{N} g(\sigma)$$

with $g(\sigma)$ i.i.d. Gaussian random variables.

Physics literature:

Quantum Random Energy Model

interesting regime: $\|U\|_{\infty} \approx \mathcal{O}(N)$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Excursion: Simple properties of REM

Reference: Bovier, Statistical Mechanics of Disordered Systems, CUP 2006.

 $U(\sigma) = \sqrt{N} g(\sigma)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let
$$u_N(x)$$
 für $x > -\frac{\ln N}{\ln 2}$ be unique solution of $\frac{2^N}{\sqrt{2\pi}} \int_{\sqrt{N}}^{\infty} e^{-y^2/2} dy = e^{-x}$.

Then:
$$u_N(x) = \frac{1}{\kappa_c} + \frac{\kappa_c}{N} \left(x - \frac{\ln(4\pi \ln 2^N)}{2} \right) + o\left(\frac{1}{N^{\frac{3}{2}}}\right) \operatorname{mit} \left[\frac{\kappa_c}{\sqrt{2\ln 2}} \right]$$

Lemma (Extremal value statistics I)

For all $x > -\frac{\ln N}{\ln 2}$: $\mathbb{P}\left(\min U \ge -N u_N(x)\right) = \left(1 - 2^{-N} e^{-x}\right)^{2^N} \to e^{-e^{-x}}.$

E.g. for $x = \varepsilon N / \kappa_c^2$ mit $\varepsilon > 0$ with asympt. (exp.) full probability:

$$\begin{split} \min U &\geq -N u_N(\varepsilon N/\kappa_c^2) \geq -\kappa_c^{-1} \left(1+\varepsilon\right) N, \\ \|U\|_{\infty} &\leq \kappa_c^{-1} \left(1+\varepsilon\right) N. \end{split}$$

More is known, e.g.:

Extremal values $U_{min} =: U_0 \le U_1 \le ...$ consitute a **Poisson process** with exponentially increasing intensity:

Lemma (Extremal value statistics II)

The point process

$$\sum_{\sigma} \delta_{u_N^{-1}(U(\sigma)/N)}$$

converges weakly for $N \to \infty$ to the Poisson process with intensity measure $e^{-x} dx.$

Quantum phase transition of the ground-state at $\kappa_c = \frac{1}{\sqrt{2 \ln 2}}$:

- $\kappa < \kappa_c$: delocalized ground state and low-energy states
- $\kappa > \kappa_c$: ground-state is localized mostly in lowest value of *U*.

 $\kappa = \kappa_c$: $\gamma_{min} = E_1 - E_0$ is typically exponentially small N

Back of the envelop calculations for the ground state:

1st perturbation theory

- Fate of localized states: $\langle \delta_{\sigma}, H \delta_{\sigma} \rangle = N + \kappa U(\sigma).$
- Fate of delocalized states:

$$\langle f_A, U f_A \rangle = \frac{1}{2^N} \sum_{\sigma} U(\sigma) = \mathcal{O}(\sqrt{N} 2^{-N/2}),$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

II. Anderson Model on the Hamming cube

Spectral properties near the ground state and some math methods to take home

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

QREM and predictions

$$H = -\Delta + \kappa U \quad \text{on } \ell^2(\{-1,1\}^N)$$

- $\kappa \ge 0$ disorder strength
- $U(\sigma) = \sqrt{N} g(\sigma)$, where $g(\sigma)$ i.i.d. standard Gaussian random variables.

Low-energy spectrum:

Jörg/Krzakala/Kurchan/Maggs, PRL 101, 147204 (2008)

$$\Gamma = \kappa^{-1},$$
$$\widehat{H} = \kappa^{-1} (\frac{1}{2} (-\Delta - N) + \kappa U)$$

Critical disorder parameter:

Theorem ($\kappa < \kappa_c$)

In case $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$, s.t. with asympt. (exp.) full probability and all $N \ge N_{\varepsilon}$, the eigenvalues E of H with $E \le \left(1 - \frac{\kappa}{\kappa_c} - 3\varepsilon\right) N$ are found in intervals centered at

$$2n-\frac{\kappa^2}{1-\frac{2n}{N}}, \qquad n\in\{0,1,\dots\}\$$

with radius $\mathcal{O}(\sqrt{\frac{\ln N}{N}})$.

There are exactly $\binom{N}{n}$ eigenvalues in each ball and the corresponding normalized eigenfunctions ψ_E are delocalized:

$$\|\psi_E\|_{\infty}^2 \leq 2^{-N} e^{\Gamma\left(rac{x_E}{2}
ight)N}$$

where
$$\Gamma(x) := -x \ln x - (1-x) \ln(1-x)$$
 and $x_E := \frac{E}{N} - \frac{\kappa U_{\min}}{N}$

Step 1:

Hypercontractivity of the Laplacian

. . . .

Integral kernel of semigroup: $\langle \delta_{\sigma}, e^{t\Delta} \delta_{\sigma'} \rangle = e^{-tN} \cosh(t)^N \tanh(t)^{d(\sigma,\sigma')}$.

Hypercontractivity:

$$\left\|\boldsymbol{e}^{t\Delta}\right\|_{2\to\infty} = \sup_{\|\psi\|=1} \sup_{\sigma} \left|\langle \delta_{\sigma}, \boldsymbol{e}^{t\Delta} \psi \rangle\right| \le \left|\langle \delta_{\sigma}, \boldsymbol{e}^{2t\Delta} \delta_{\sigma} \rangle\right|^{1/2} = \left(\frac{1+\boldsymbol{e}^{-2t}}{2}\right)^{N/2}$$

Estimate of eigenfunctions:

Lemma (Delocalization)

The ℓ^2 -normalized eigenfunctions ψ_E of $H = -\Delta + \kappa U$ corresponding to eigenvalues $E \leq 2N + \kappa U_{\min}$ satisfy for all σ : $|\psi_E(\sigma)|^2 \leq 2^{-N} e^{\Gamma(\frac{x_E}{2})N}$, with $x_E := \frac{E}{N} - \frac{\kappa U_{\min}}{N} \leq 2$.

Proof:

$$\begin{aligned} |\psi_{E}(\sigma)|^{2} &\leq \langle \delta_{\sigma} , P_{(-\infty,E]}(H) \, \delta_{\sigma} \rangle \leq \inf_{t>0} e^{tE} \langle \delta_{\sigma} , e^{-tH} \, \delta_{\sigma} \rangle \\ &\leq \inf_{t>0} e^{t(E-\kappa U_{\min})} \langle \delta_{\sigma} , e^{t\Delta} \, \delta_{\sigma} \rangle = 2^{-N} e^{\Gamma\left(\frac{x_{E}}{2}\right)N}. \quad \Box \end{aligned}$$

Methods of proof - delocalization regime

Step 2:

Concentration of measure

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Spectral projection onto center of the band and its complement: $\delta > 0$.

$$Q_{\delta} := 1 - P_{\delta} := \mathbb{1}_{[N(1-\delta),N(1+\delta)]}(-\Delta).$$

Chernoff estimate

$$e^{(N-a)/2} \binom{N}{n} \leq 2^N \exp\left(-a^2/2N\right), a \in (0, N), \text{ folgt}$$
$$\boxed{\dim P_{\delta} \leq 2^{N+1} e^{-\delta^2 N/2}.}$$

Lemma (Concentarion of measure I)

Consider $\{W(\sigma)\}$ i.i.d. r.v., which are bouned, $||W||_{\infty} \leq 1$. Then for all $\delta > 0$, $\lambda > 0$:

$$\mathbb{P}\left(\left|\left\|m{P}_{\delta}\,m{W}m{P}_{\delta}
ight\|-\mathbb{E}\left[\left\|m{P}_{\delta}\,m{W}m{P}_{\delta}
ight\|
ight]
ight|>\lambda\,\sqrt{rac{\dimm{P}_{\delta}}{2^{N}}}
ight)\leq~C\,m{e}^{-c\lambda^{2}}\,.$$

where $C, c \in (0, \infty)$ are numerical constants.

Talagrand, Publ. Math. IHES 81, 73-205 (1995)

Lemma (Talagrand inequality)

Let K > 0 and X_1, \ldots, X_n independent complex-valued. r.v.'s, which are bounded by K. Let $F : \mathbb{C}^n \to \mathbb{R}$ be a 1-Lipschitz convex function. Then:

 $\mathbb{P}\left(|F(X) - \mathbb{E}\left[F(X)\right]| \geq \lambda K\right) \leq C e^{-c\lambda^2},$

where $C, c \in (0, \infty)$ are numerical constants.

Application $F : \mathbb{R}^{Q_N} \to \mathbb{R}$, $F(W) := \|P_{\delta}WP_{\delta}\|$:

Buondedness and convexity are evident. (Triangle inequality).

Lipschitz continuity: Pick $\psi \in P_{\delta}\ell^2(\mathcal{Q}_N)$ normalized and $F(W) = \langle \psi, W\psi \rangle$.

$$\begin{split} F(W) - F(W') &\leq \langle \psi, W\psi \rangle - \langle \psi, W'\psi \rangle \leq \|W - W'\|_2 \|\psi\|_{\infty} \\ &\leq \|W - W'\|_2 \sqrt{\langle \delta_{\sigma}, P_{\delta} \delta_{\sigma} \rangle} \, \|\psi\|_2 = \|W - W'\|_2 \sqrt{\frac{\dim P_{\delta}}{2^N}} \, . \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 今へぐ

Wlog. $\mathbb{E}[F(X)] = 0$ and F smooth

after Maurier, Pisier

Estimate on exponential moment is enough: $\mathbb{E}\left[e^{tF(X)}\right] \leq e^{ct^2}$ for all t > 0.

Inserting an independent copy Y of X results in an upper bound by Jensen's inequality:

$$\mathbb{E}\left[e^{tF(X)}\right] \leq \mathbb{E}\left[e^{t(F(X)-F(Y))}\right] = \mathbb{E}\left[\exp\left(t\int_{0}^{\pi/2}\frac{d}{d\theta}F(X\cos\theta+Y\sin\theta)d\theta\right)\right]$$
$$\leq \frac{2}{\pi}\int_{0}^{\pi/2}\mathbb{E}\left[\exp\left(t\frac{\pi}{2}(\nabla F)(X\cos\theta+Y\sin\theta)\cdot(-X\sin\theta+Y\cos\theta)\right)\right]d\theta$$

Conditioning on Gaussian rv's $X \cos \theta + Y \sin \theta$, the rv's $-X \sin \theta + Y \cos \theta$ are independent and Gaussian! Integrating out the latter, and using $\|\nabla F\| \le 1$ yields the result.

¹ For a complete proof, see also: Tao, Topics in random matrix theory, AMS 2012 (A > () > () > ()

Lemma (Concentarion of measure II)

Consider $\{W(\sigma)\}_{\sigma \in Q_N}$ i.i.d. r.v. with the following properties:

centered,
$$\mathbb{E}[W(\sigma)] = 0$$
,

2 bounded variance, $\mathbb{E}\left[W(\sigma)^2\right] \leq 1$, and

3 bounded $||W||_{\infty} \leq p_N$, where p_N is a polynomial in N.

Then for all $\delta > 0$ and all N with $p_N^2 \exp(-\delta^2 N/2) \le 1$ (i.e. all N sufficiently large):

 $\mathbb{E}\left[\left\|\boldsymbol{P}_{\delta}\boldsymbol{W}\boldsymbol{P}_{\delta}\right\|\right] \leq 2N \, e^{-\delta^2 N/4} \, .$

Upper bound: $\mathbb{E}\left[\left\|P_{\delta}WP_{\delta}\right\|\right] \leq \left(\mathbb{E}\left[\operatorname{Tr}(P_{\delta}WP_{\delta})^{2N}\right]\right)^{1/2N}$

Estimate Schatten norms by method of moments

Application: For any $\varepsilon > 0$ with asympt. (exp.) full probability:

$$\kappa_{c} \| U \|_{\infty} \leq (1 + \varepsilon) N$$

Effective truncation of the potential, s.t. for all $\varepsilon \in (0, 1)$ with **asympt. (exp.)** full probability for all $\delta > 0$ and all *N* sufficiently large (only depending on ε):

•
$$\kappa_c \| P_{\delta} U P_{\delta} \| \leq 4 N^{3/2} e^{-\delta^2 N/4}$$

 $\begin{array}{lll} \mbox{Concentration I:} & W = \kappa_c \frac{U}{(1+\varepsilon)N}, \ \lambda = \sqrt{N}/2 \\ \mbox{Concentration II:} & W = U/\sqrt{N} \end{array} .$

 $\begin{array}{lll} \mbox{Concentration I:} & W = \kappa_c^2 \frac{U^2 - N}{(1 + \varepsilon)^2 N^2}, \ \lambda = \sqrt{N}/8 \\ \mbox{Concentration II:} & W = (U^2 - N)/N \end{array} .$

$$\bullet \ \kappa_c^4 \| \mathcal{P}_{\delta}(U^4 - c N^2) \mathcal{P}_{\delta} \| \leq 8 N^3 e^{-\delta^2 N/4}$$

Concentration I:
$$W = \kappa_c^2 \frac{U^4 - cN^2}{(1+\varepsilon)^4 N^4}, \quad \lambda = \sqrt{N}/8$$

Concentration II: $W = (U^4 - cN^2)/N^2$

Step 3:

Rigorous perturbation theory

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Lemma (Krein-Feshbach-Schur)

For all $E < \inf \sigma(QHQ)$ and $R(E) := (Q(H - E)Q)^{-1}$ (on the subspace corresponding to Q):

1 $E \in \sigma(H)$ iff $0 \in \sigma(PHP - E - PHR(E)HP)$.

2
$$H\psi = E\psi$$
 with $\psi = (\psi_1, \psi_2)^T$ iff:

$$(PHP - E - PHR(E)HP)\psi_1 = 0$$

und $\psi_2 = -R(E)QHP\psi_1$.

Methods of proof – delocalization regime

Proof idea of theorem in case $\kappa < \kappa_c$:

• Lower bound on $Q_{\delta}HQ_{\delta}$ on $Q_{\delta}\ell^{2}(Q_{N})$ with asympt. (exp.) full probability:

$$-Q_{\delta}\Delta Q_{\delta} + \kappa \, Q_{\delta} \, U Q_{\delta} \geq (1-\delta) \, N - (1+\varepsilon) \, N \, \frac{\kappa}{\kappa_{c}} \geq \left(1 - \frac{\kappa}{\kappa_{c}} - 2\varepsilon\right) N$$

where $0 < \delta \leq \varepsilon$ and *N* is sufficiently large .

Hence for all
$$E \leq \left(1 - rac{\kappa}{\kappa_c} - 3\varepsilon\right) N$$
: $\|R_{\delta}(E)\| \leq rac{1}{\varepsilon N}$.

resolvent equation:

$$R_{\delta}(E) - rac{Q_{\delta}}{N-E} = R_{\delta}(E) \left(NQ_{\delta} - Q_{\delta}HQ_{\delta}\right) rac{Q_{\delta}}{N-E}$$

and hence:

$$P_{\delta}UR_{\delta}(E)UP_{\delta} - P_{\delta}\frac{N}{N-E}$$

= $P_{\delta}UR_{\delta}(E)(NQ_{\delta} - Q_{\delta}HQ_{\delta})UP_{\delta}\frac{1}{N-E} + P_{\delta}(UQ_{\delta}U - N)P_{\delta}\frac{1}{N-E}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

From concentration of measure estimates:

$$\begin{split} \|P_{\delta} \left(UQ_{\delta} U - N \right) P_{\delta} \| &\leq c \, N^2 \, e^{-\delta^2 N/4} \,, \\ \|P_{\delta} UR_{\delta}(E) \left(NQ_{\delta} + Q_{\delta} \Delta Q_{\delta} \right) \frac{1}{N - E} UP_{\delta} \| \\ &\leq c \, \delta \|R_{\delta}(E) \| \|P_{\delta} U^2 P_{\delta} \| \leq c \, \frac{\delta}{\varepsilon} \left(1 + N \, e^{-\delta^2 N/4} \right) \,, \\ \|\|P_{\delta} UR_{\delta}(E) Q_{\delta} UQ_{\delta} \frac{1}{N - E} UP_{\delta} \| \leq \frac{\|R_{\delta}(E)\|}{N - E} \|UP_{\delta}\| \|UQ_{\delta} UP_{\delta}\| \\ &\leq \frac{c}{\varepsilon N^2} \left(N + N^2 \, e^{-\delta^2 N/4} \right)^{\frac{1}{2}} \left(N^2 + N^3 \, e^{-\delta^2 N/4} \right)^{\frac{1}{2}} \,. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Choice of $\delta = \mathcal{O}\left(\sqrt{\frac{\ln N}{N}}\right)$.

Insert into Krein-Feshbach-Schur formula ...

Idea:

Geometric decomposition of Hamming cube

Eigenvalues below $E_{\epsilon} := \left(1 - \frac{\kappa}{\kappa_{c}} + \epsilon\right) N$ with $\epsilon > 0$ small, stem from large negative deviations of REM:

$$X_{\epsilon} := \left\{ \sigma \,|\, \kappa \, U(\sigma) < -\frac{\kappa}{\kappa_{c}} N + \epsilon N \right\}$$

For $\epsilon > 0$ small enough $\gamma > 0$ and $0 < \nu < \frac{\kappa}{\kappa_c} - \epsilon$, s.t. with asmpt. (exp.) full probability:

- X_ε consists of isolated points, separated by 2γN steps.
- On balls B_σ := {σ' | dist(σ, σ') < γN} the potential κU(σ') is larger or equal to −νN for all σ' ≠ σ.</p>

Energy adapted decomposition

Let
$$R := \mathcal{Q}_N \setminus \bigcup_{\sigma \in X_{\epsilon}} B_{\sigma}$$
 and
 $H_{B_{\sigma}} := 1_{B_{\sigma}} H 1_{B_{\sigma}},$ auf $\ell^2(B_{\sigma}),$
 $H_R := 1_R H 1_R$ auf $\ell^2(R).$
Consider
 $\widehat{H} := H - T := \bigoplus_{\sigma \in X_{\epsilon}} H_{B_{\sigma}} \oplus H_R$.

Naive estimate:

$$\|T\| \leq \sqrt{\gamma(1-\gamma)}N + o(N).$$

Energy adapted decomposition

Let
$$R := \mathcal{Q}_N \setminus \bigcup_{\sigma \in X_{\epsilon}} B_{\sigma}$$
 and
 $H_{B_{\sigma}} := 1_{B_{\sigma}} H 1_{B_{\sigma}}, \qquad \text{auf } \ell^2(B_{\sigma}),$
 $H_R := 1_R H 1_R \qquad \text{auf } \ell^2(R).$

Consider
$$\widehat{H} := H - T := \bigoplus_{\sigma \in X_{\epsilon}} H_{B_{\sigma}} \oplus H_{R}$$
.

Better:
$$P_E := 1_{(-\infty,E]}(\widehat{H}) \text{ mit } E = E_{\epsilon} + ||T||.$$

 $H = \widehat{H}_E + \widehat{T}_E$ (1)
mit $\widehat{H}_E \equiv \begin{pmatrix} \widehat{H} P_E & 0\\ 0 & \widehat{H} Q_E + Q_E T Q_E \end{pmatrix}, \text{ und } \widehat{T}_E \equiv \begin{pmatrix} P_E T P_E & P_E T Q_E \\ Q_E T P_E & 0 \end{pmatrix}.$

Main message: $||P_E T|| \leq e^{-c_{\epsilon}N}$.

- Spectrum of H_R below E_{ε} resembles H in delocalization regime.
- Spectrum of $H_{B_{\sigma}}$ below E_{ε} can be computed explicitly ... next page

▲□▶▲□▶▲□▶▲□▶ □ のへで

Ground state of Laplacian on ball B_{σ} :

$$E_0(-\Delta_{B_\sigma}) = N(1 - 2\sqrt{\gamma(1-\gamma)}) + o(N)$$

Add rank-one perturbation $\kappa U(\sigma)$ plus moderate background potential:

 $\blacksquare \quad E_0(H_{B_{\sigma}}) = N + \kappa U(\sigma) + \mathcal{O}(1)$

The normalized ground state satisfies:

$$\sum_{\sigma'\in\partial B_{\sigma}}\left|\psi_{0}(\sigma')
ight|^{2}\leq e^{-L_{\gamma}N}$$
 mit $L_{\gamma}>0.$ $\left|\psi_{0}(\sigma)
ight|^{2}\geq1-\mathcal{O}(N^{-1})$

■ $H_{B_{\sigma}}$ has a spectral gap $\mathcal{O}(N)$ above its ground state.

III. Adiabatic quantum computing and a gap estimate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Consider an energy landscape $u : \{1, \dots, M\} \to \mathbb{R}$, which defines a 'Problem-Hamiltonian'

 $U = \operatorname{diag}\left(u(1), \ldots, u(M)\right)$

on \mathbb{C}^{M} . Consider the time-evolution generated by

$$h(s) := h_D(s) + c(s) U$$

on \mathbb{C}^M , where:

- $c : \mathbb{R} \to [0, 1]$ continuous coupling, c(0) = 0, c(1) = 1
- 'Driving-Hamiltonian' $h_D : \mathbb{R} \to \text{Herm}(\mathbb{C}^{M \times M})$ continuous, $h_D(1) = 0$.

Initial value problem:

$$i\frac{d}{dt}\psi(t)=h(t/T)\psi(t)\qquad\psi(0)\in\mathbb{C}^{M}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Aim: Compute the mimimum location $j_0 \in \{1, \ldots, M\}$ of U!

One wants the quantum adiabatic algorithm to succeed not only for one energy landscape but for many. Consider the ensemble of **scambled** problems ...

III.1. Lower bounds on run time for scambled problem

Let $\pi \in S_M$ be a permutation on M elements and define

$$U_{\pi} = \operatorname{diag}\left(u(\pi^{-1}(1)), \ldots, u(\pi^{-1}(M))\right)$$

and $h_{\pi}(t) := h_D(t/T) + c(t/T)U_{\pi}$, and denote by $\psi_{\pi}(t)$ the solution of the corresponding initial value problem starting from a **common** initial state $\psi(0)$. **Success probability** for search after run-time *T*:

$$|\psi_{\pi}(\pi(j_0); T)|^2 =: b \quad (*)$$

Farhi, Goldstone, Gutmann, Nagaj Int. J. Quant. Inf., 503-516 (2008), 503-516

Theorem (Scambling theorem)

Let $\varepsilon > 0$ and suppose that (*) holds for a set of εM ! permutations. Then for all M:

$$T \geq rac{arepsilon^2 bM - 4arepsilon \sqrt{rac{arepsilon}{2}M}}{16\sigma_M(u)} \quad [=: T_M(b,arepsilon)]$$

where $\sigma_M(u)^2 := \sum_{k=1}^M (u(k) - u(j_0))^2$ is assumed to be strictly positive.

Typically for large M: $T \ge \mathcal{O}(\sqrt{M})$.

Timescale of Grover search algorithm!

Adiabatic theorem: Jansen/Ruskai/Seiler, J. Math. Phys. 48, 102111 (2007)

Theorem (Kato)

Let h(s), $s \in [0, 1]$ be a family of twice continuously differentiable hermitian matrices on \mathbb{C}^M with non-degenerate ground-state $\phi(s) \in \mathbb{C}^M$ and gap $\gamma(s) > 0$. Then the unique solution of the initial value problem

$$i \frac{d}{dt} \psi(t) = h(t/T) \psi(t), \qquad \psi(0) = \phi(0),$$

satisfies

$$egin{aligned} &\sqrt{1-|\langle\psi(T),\phi(1)
angle|^2} \leq rac{1}{T} \left[rac{1}{\gamma(0)^2} \|h'(0)\| + rac{1}{\gamma(1)^2} \|h'(1)\| \ &+ \int_0^1 rac{7}{\gamma(s)^3} \|h'(s)\|^2 + rac{1}{\gamma(s)^2} \|h''(s)\| ds
ight] \,. \end{aligned}$$

Generalization to infinite-dimensional Hilbertspaces

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Application to the scrambled problem

Suppose $h_{\pi}(s) = H_D(sT) + c(sT) U_{\pi}$, $s \in [0, 1]$, satisfies assumptions in adiabatic theorem with $\gamma_{\pi}(s) > 0$ gap above the ground-state and set

$$\gamma^{\#}_{\mathsf{min},\pi} := \min_{m{s} \in [0,1]} \left\{ \gamma_{\pi}(m{s})^2, \gamma_{\pi}(m{s})^3
ight\} \,.$$

Suppose that for some $C_M < \infty$ one has $\max\{\|h'_{\pi}(s)\|, \|h'_{\pi}(s)\|^2, \|h''_{\pi}(s)\|\} \le C_M$ for all $s \in [0, 1]$ and all π .

Application: scrambled QREM $M = 2^N$

$$\bullet \ h_{\pi}(s) = -(1-s)\Delta + sU_{\pi}$$

$$||h'_{\pi}(s)|| \le ||\Delta|| + \kappa ||U|| \le 2N + \frac{2}{\kappa_c}N, \quad ||h''_{\pi}(s)|| = 0$$

$$\sigma_M(u)^2 \le M 2 \|U\| \le M \frac{4}{\kappa_c} N$$

4

Then by the adiabatic theorem:

$$\sqrt{1 - \left|\psi_{\pi}(\pi(j_0); T)
ight|^2} \leq rac{10 C_M}{T \, \gamma^{\#}_{\min, \pi}} \,. \quad (**)$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for all T > 0.

A gap estimate via the run time

For $\varepsilon \in (0, 1]$ take *M* large enough st $T_M(\frac{1}{2}, \varepsilon) > 0$ and consider the set

$$\mathcal{G}_{M}(arepsilon) := \left\{ \pi \, | \, \gamma^{\#}_{\min,\pi} \geq rac{20\sqrt{2} \mathcal{C}_{M}}{\mathcal{T}_{M}(rac{1}{2},arepsilon)}
ight\}$$

and

$$T=T_M(rac{1}{2},arepsilon)/2$$
 .

By (**) for any $\pi \in \mathcal{G}_M(\varepsilon)$: $|\psi_{\pi}(\pi(j_0); T)|^2 \geq \frac{1}{2}$.

The scambling theorem then implies that for all *M* large enough:

$$|\mathcal{G}_M(\varepsilon)| < \varepsilon M!$$
 .

Using permutation invariance of the REM distribution this yields with $\varepsilon = N^{-1}$:

Corollary

There is some constant $C < \infty$ such that for the QREM

$$\lim_{N o \infty} \mathbb{P}\left(\gamma_{\mathsf{min}}^{\#} \leq \textit{CN}^{4} \, 2^{-N/2}
ight) = 1 \, .$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

II.2. Proof of the lower bound on the run time

Let $k \in \{1, ..., M\}$ and $\pi_k = \pi \circ \tau_{j_0, k}$, where $\tau_{j, k} \in S_M$ is the transposition of j and k.

Lemma ('scambling')

For all
$$T \ge 0$$
 and all k :
$$\frac{1}{M!} \sum_{\pi \in S_M} \sum_{k=1}^M \|\psi_{\pi}(T) - \psi_{\pi_k}(T)\|^2 \le 4 T \sigma_M(u).$$

Lemma ('geometry in Hilbert space')

Let $v_1, \ldots, v_L \in \mathbb{C}^M$ orthonormal vectors and $\psi_1, \ldots, \psi_L \in \mathbb{C}^M$ normalized vectors, which satisfy

for all $k \in \{1, \ldots, L\}$: $|\langle v_k, \psi_k \rangle|^2 \ge b > 0$.

Then for all normalized $\varphi \in \mathbb{C}^M$:

$$\sum_{k=1}^{L} \left\|\psi_{k} - \varphi\right\|^{2} \geq bL - 2\sqrt{L}.$$

Proof of the lower bound in scrambling theorem

Fix $\pi \in S_M$ and let

$$\mathcal{G}_{\pi} := \left\{ \mathbf{k} \in \{1, \ldots, M\} \mid \left| \psi_{\pi_k}(\pi(\mathbf{k}); T) \right|^2 \geq b \right\} \,.$$

Lemma 2 with $L = |G_{\pi}|$ und $v_k = e_{\pi(k)}$ with $k \in G_{\pi}$, and $\psi_k = \psi_{\pi_k}(T)$ and $\varphi = \psi_{\pi}(T)$ yields:

$$\sum_{k\in \mathcal{G}_{\pi}} \left\|\psi_{\pi}(\mathcal{T}) - \psi_{\pi_k}(\mathcal{T})
ight\|^2 \geq b\left|\mathcal{G}_{\pi}
ight| - 2\sqrt{\left|\mathcal{G}_{\pi}
ight|}\,, \quad (*)$$

Estimate on $|G_{\pi}|$ starts from observation that by assumption:

$$\sum_{\pi \in \mathcal{S}_M} |G_{\pi}| = \sum_{k=1}^M \sum_{\pi \in \mathcal{S}_M} \mathbf{1}[|\psi_{\pi_k}(\pi_k(j_0)); T)|^2 \ge b] \ge \varepsilon \mathcal{M}! \mathcal{M}.$$

This implies: $\frac{1}{M!} \sum_{\pi \in S_M} \mathbf{1}_{|G_{\pi}| \ge \frac{\varepsilon}{2}M} \ge \frac{\varepsilon}{2}.$

Apply Lemma 1 and use (*):

$$T \geq \frac{1}{M! \, 4\sigma_M(u)} \sum_{\pi} \sum_{k \in G_{\pi}} \|\psi_{\pi}(T) - \psi_{\pi_k}(T)\|^2 \geq \frac{\varepsilon^2 b M - 4\varepsilon \sqrt{\frac{\varepsilon}{2}M}}{16\sigma_M(u)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Just a calculation:

$$\begin{split} & \frac{d}{dt} \|\psi_{\pi}(t) - \psi_{\pi_{k}}(t)\|^{2} \\ &= -2 \frac{d}{dt} \operatorname{Re} \langle \psi_{\pi}(t), \psi_{\pi_{k}}(t) \rangle \\ &= -2 \operatorname{Re} \left[i \langle H_{\pi}(t) \psi_{\pi}(t), \psi_{\pi_{k}}(t) \rangle - i \langle \psi_{\pi}(t), H_{\pi_{k}}(t) \psi_{\pi_{k}}(t) \rangle \right] \\ &= 2 \operatorname{Im} \langle \psi_{\pi}(t), \left[H_{\pi}(t) - H_{\pi_{k}}(t) \right] \psi_{\pi_{k}}(t) \rangle \\ &= 2 c(t) \operatorname{Im} \langle \psi_{\pi}(t), \left[U_{\pi} - U_{\pi_{k}} \right] \psi_{\pi_{k}}(t) \rangle \\ &= 2 c(t) (u(k) - u(j_{0})) \operatorname{Im} \left[\langle \psi_{\pi}(t), e_{\pi(k)} \rangle \langle e_{\pi(k)}, \psi_{\pi_{k}}(t) \rangle - \langle \psi_{\pi}(t), e_{\pi_{k}(k)} \rangle \langle e_{\pi_{k}(k)}, \psi_{\pi_{k}}(t) \rangle \right] \\ &\leq 2 |c(t)| |u(k) - u(j_{0})| \left(\left| \langle \psi_{\pi}(t), e_{\pi(k)} \rangle \right| + \left| \langle e_{\pi_{k}(k)}, \psi_{\pi_{k}}(t) \rangle \right| \right) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Just a calculation:

$$\sum_{\pi\in\mathcal{S}_M}\frac{d}{dt}\|\psi_{\pi}(t)-\psi_{\pi_k}(t)\|^2\leq 4|\boldsymbol{c}(t)|\sum_{\pi\in\mathcal{S}_M}|\boldsymbol{u}(k)-\boldsymbol{u}(j_0))|\left|\langle\psi_{\pi}(t),\boldsymbol{e}_{\pi(k)}\rangle\right|\,.$$

Cauchy-Schwarz for the *k*-sum:

$$\begin{aligned} \frac{d}{dt} \sum_{\pi \in \mathcal{S}_M} \sum_{k=1}^M \left\| \psi_{\pi}(t) - \psi_{\pi_k}(t) \right\|^2 &\leq 4 \sum_{\pi \in \mathcal{S}_M} \sqrt{\sum_{k=1}^M |u(k) - u(j_0)|^2} \sqrt{\sum_{k=1}^M |\langle \psi(t), \boldsymbol{e}_{\pi(k)} \rangle|^2} \\ &= 4 M! \, \sigma_M(u) \,. \end{aligned}$$

Integration using $\psi_{\pi}(0) = \psi(0)$ yields:

$$\sum_{\pi \in \mathcal{S}_{M}} \sum_{j=1}^{M} \|\psi_{\pi}(T) - \psi_{\pi_{k}}(T)\|^{2} = \int_{0}^{T} \sum_{\pi \in \mathcal{S}_{M}} \frac{d}{dt} \sum_{k=1}^{M} \|\psi_{\pi}(t) - \psi_{\pi_{k}}(t)\|^{2} dt$$
$$\leq 4T M! \sigma_{M}(u).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Complete v_1, \ldots, v_L to ONB of \mathbb{C}^M :

$$\sum_{k=1}^{L} \left\| \psi_{k} - \varphi \right\|^{2} = \sum_{k=1}^{L} \sum_{j=1}^{M} \left| \langle \mathbf{v}_{j}, \psi_{k} \rangle - \langle \mathbf{v}_{j}, \varphi \rangle \right|^{2}$$

$$\geq \sum_{k=1}^{L} \left| \langle \mathbf{v}_{k}, \psi_{k} \rangle - \langle \mathbf{v}_{k}, \varphi \rangle \right|^{2}$$

$$= \sum_{k=1}^{L} \left[\left| \langle \mathbf{v}_{k}, \psi_{k} \rangle \right|^{2} + \left| \langle \mathbf{v}_{k}, \varphi \rangle \right|^{2} - 2 \operatorname{Re} \langle \psi_{k}, \mathbf{v}_{k} \rangle \langle \mathbf{v}_{k}, \varphi \rangle \right]$$

$$\geq L b - 2 \sqrt{\sum_{k=1}^{L} \left| \langle \mathbf{v}_{k}, \psi_{k} \rangle \right|^{2}} \sqrt{\sum_{k=1}^{L} \left| \langle \mathbf{v}_{k}, \varphi \rangle \right|^{2}}$$

$$\geq L b - 2 \sqrt{L}.$$

IV. Interesting directions to explore

Thermodynamic phase transitions of QREM:

Jörg/Krzakala/Kurchan/Maggs, PRL 101, 147204 (2008)

 Resonant delocalization of eigenfunctions closer to center of the band Bandmitte and in band-gaps of Laplacian.

Numerical results: Laumann/Pal/Scardicchio '14

Toy model for resonant delocalization in QREM:

Anderson Modell on the complete graph on M vertices

$$\begin{array}{c} \boxed{H = -|\varphi_0\rangle\langle\varphi_0| + \kappa_M \ g} \\ \text{with } \langle\varphi_0| = (1, 1, \dots, 1)/\sqrt{M} \ \text{und } \kappa_M := \frac{\lambda}{\sqrt{2\log M}}. \end{array}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Surprising resultM.Aizenman, M. Shamis, S.W. (2014)Band of ℓ^1 -delocalized states near $E \approx -1$ in case $\lambda > \sqrt{2}$.